Rumah > pangkalan data > Redis > Apakah jenis data pelik dan pengetahuan kelompok redis?

Apakah jenis data pelik dan pengetahuan kelompok redis?

王林
Lepaskan: 2023-06-02 22:01:56
ke hadapan
691 orang telah melayarinya

    Pelbagai jenis data

    Jenis rentetan adalah mudah dan mudah, serta menyokong pra-peruntukan ruang, yang bermaksud lebih banyak ruang akan diperuntukkan setiap kali , supaya jika rentetan menjadi lebih panjang pada masa akan datang, tidak perlu memohon ruang tambahan Sudah tentu, premisnya ialah ruang yang tinggal sudah mencukupi.

    Jenis Senarai boleh melaksanakan baris gilir mesej yang mudah, tetapi sila ambil perhatian bahawa kehilangan mesej mungkin berlaku Ia tidak menyokong mod ACK.

    Jadual cincang adalah sedikit seperti pangkalan data hubungan, tetapi apabila jadual cincang menjadi lebih besar dan lebih besar, sila berhati-hati untuk mengelak daripada menggunakan pernyataan seperti hgetall, kerana meminta sejumlah besar data akan menyebabkan redis disekat, supaya saudara-saudara berikut Kita perlu menunggu.

    Jenis koleksi yang ditetapkan boleh membantu anda melakukan beberapa statistik Contohnya, jika anda ingin mengira pengguna aktif pada hari tertentu, anda boleh terus memasukkan ID pengguna ke dalam koleksi , seperti sdiff, yang boleh mendapatkan data antara set perbezaan, sunion boleh mendapatkan kesatuan antara set, dan mempunyai banyak fungsi, tetapi anda mesti berhati-hati, kerana fungsi hebat datang pada harga dan sumber IO dan boleh menyebabkan sekatan, jadi apabila menggunakan set besar Anda harus berhati-hati apabila menggunakan operasi yang memakan masa

    zset boleh dikatakan sebagai bintang paling terang Ia boleh diisih , terdapat banyak senario aplikasi, seperti pengguna xx teratas yang menyukainya, baris gilir tertunda, dsb.

    Kelebihan bitmap bitmap ialah menjimatkan ruang, terutamanya apabila melakukan beberapa statistik, seperti mengira bilangan pengguna yang telah log masuk pada hari tertentu dan sama ada pengguna tertentu telah melog masuk. Jika anda tidak menggunakan bitmap, anda Anda mungkin terfikir untuk menggunakan set.

    SADD day 1234//签到就添加到集合
    SISMEMBER day 1234//判断1234是否签到
    SCARD day   //有多少个签到的
    Salin selepas log masuk

    set adalah memuaskan dari segi fungsi, tetapi berbanding dengan bitmap, set menggunakan lebih banyak ruang storan Lapisan bawah set terutamanya terdiri daripada koleksi integer atau hashtable hanya boleh digunakan apabila jumlah data sangat kecil. Ia hanya boleh digunakan, biasanya kurang daripada 512 elemen, dan semua elemen mestilah integer Untuk set, data set integer adalah lebih padat, dan pertanyaan itu hanya boleh menjadi carian binari kerumitan masa ialah Ia adalah O(logN), tetapi jadual cincang di sini adalah sama dengan cincang dalam lima jenis data utama redis, tetapi tiada nilainya konflik kerana ia adalah satu set , tetapi isu yang berkaitan dengan rehash perlu dipertimbangkan. ok, agak jauh kita bercakap tentang masalah daftar masuk pengguna Apabila terdapat ramai pengguna, set pasti akan menggunakan hashtable, sebenarnya setiap elemen adalah struktur dictEntry

    typedef struct dictEntry {
        // 键
        void *key;
        // 值
        union {
            void *val;
            uint64_t u64;
            int64_t s64;
        } v;
        // 指向下个哈希表节点,形成链表
        struct dictEntry *next;
    } dictEntry;
    Salin selepas log masuk
    <. 🎜>Daripada Apa yang boleh kita lihat dalam struktur ini? Pertama sekali, walaupun nilai kesatuan (tiada nilai) dan seterusnya (tiada konflik) adalah kosong, struktur itu sendiri memerlukan ruang dan kunci Ruang yang diduduki ini adalah nyata, dan jika anda menggunakan bitmap, satu bit sudah cukup. Ia mewakili nombor dan menjimatkan ruang Mari kita lihat cara menyediakan dan mengira bitmap.

    SETBIT day 1234 1//签到
    GETBIT day 1234//判断1234是否签到
    BITCOUNT day//有多少个签到的
    Salin selepas log masuk

    bf Ini ialah penapis Bloom RedisBloom yang disokong selepas redis4.0, tetapi modul yang sepadan perlu dimuatkan secara berasingan Sudah tentu, kami juga boleh melaksanakan penapis Bloom kami sendiri berdasarkan bitmap di atas, tetapi sejak redis Ia sudah disokong. RedisBloom boleh mengurangkan masa pembangunan kami.

    # 可以通过docker的方式快速拉取镜像来玩耍
    docker run -p 6379:6379 --name redis-redisbloom redislabs/rebloom:latest
    docker exec -it redis-redisbloom bash
    redis-cli
    # 相关操作
    bf.reserve sign 0.001 10000
    bf.add sign 99 //99这个用户加入
    bf.add exists 99//判断99这个用户是否存在
    Salin selepas log masuk

    Oleh kerana penapis Bloom mempunyai salah penilaian, semua bf menyokong kadar salah sangka tersuai, 0.001 mewakili kadar salah sangka, 10000 mewakili bilangan unsur yang boleh disimpan oleh penapis Bloom, apabila storan sebenar Apabila bilangan elemen melebihi ini nilai, kadar positif palsu akan meningkat.

    HyperLogLog boleh digunakan untuk statistik Kelebihannya ialah ia mengambil ruang storan yang sangat sedikit. Ia hanya memerlukan 12KB memori untuk mengira 2^64 elemen. Sebenarnya, ia terutamanya mengenai statistik kardinaliti, seperti UV Dari segi fungsi, UV boleh disimpan menggunakan set atau cincang, tetapi kelemahannya ialah ia menggunakan storan dan boleh menjadi kunci besar jika anda ingin menjimatkan ruang juga boleh digunakan, 12KB Peta bit spatial hanya boleh mengira 12*1024*8=98304 elemen, manakala HyperLogLog boleh mengira 2^64 elemen Walau bagaimanapun, teknologi yang berkuasa itu sebenarnya mempunyai ralat berdasarkan kebarangkalian, dan ralat standard pengiraan Kadarnya ialah 0.81%. Dalam senario di mana data besar dikira dan keperluan ketepatan tidak begitu tinggi, HyperLogLog masih sangat baik untuk menjimatkan ruang.

    PFADD uv 1 2 3 //1 2 3是活跃用户
    PFCOUNT uv //统计
    Salin selepas log masuk

    GEO 是可以应用在地理位置的业务上,比如微信附近的人或者附近的车辆等等,先来看一下如果没有GEO 这种数据结构,你如何知道你附近的人?首先得上报自己的地理位置信息吧,比如经度 116.397128,纬度 39.916527,此时可以用 string、hash 数据类型存储,但是如果要查找你附近的人,string 和 hash 这种就无能为例了,你不可能每次都要遍历全部的数据来判断,这样太耗时了,当然你也不可能通过 zset 这种数据结构来把经纬度信息当成权重,但是如果我们能把经纬度信息通过某种方式转换成一个数字,然后当成权重好像也可以,这时我们只需通过zrangebyscore key v1 v2也可以找到附近的人。真的需要这么麻烦吗?于是 GEO 出现了,GEO 转换经纬度为数字的方法是“二分区间,区间编码”,这是什么意思呢?以经度为例,它的范围是[-180,180],如果要采用3位编码值,那么就是需要二分3次,二分后落在左边的用0表示,右边的用1表示,以经度是121.48941 来说,第一次是在[0,180]这个区间,因此记1,第二次是在[90,180],因此再记1,第三次是在[90,135],因此记0。纬度也是同样的逻辑,假设此时对应的纬度编码后是010,最后把经纬度合并在一起,需要注意的是经度的每个值在偶数位,纬度的每个值在奇数位。

    1 1 0   //经度
     0 1 0  //纬度
    ------------
    101100 //经纬度对应的数值
    Salin selepas log masuk

    原理是这样,我们再来看看 redis 如何使用 GEO:

    GEOADD location 112.123456 41.112345 99 //上报用户99的地理位置信息
    GEORADIUS location  112.123456 41.112345 1 km ASC COUNT 10 //获取附近1KM的人
    Salin selepas log masuk

    搞懂集群

    生产环境用单实例 redis 的应该比较少,单实例的风险在于:

    1. 单点故障即服务故障,没有backup

    2. 单实例压力大,又要提供读,又要提供写

    于是我们首先想到的就是经典的主从模式,而且往往是一主多从,这是因为大部分应用都是读多写少的情况,我们的主负责更新,从负责提供读,就算我们的主宕机了,我们也可以选择一个从来充当主,这样整个应用依然可以提供服务。

    复制过程的细节

    当一个 redis 实例首次成为某个主的从的时候,这时主得把数据发给它,也就是 rdb 文件,这个过程 master 是要 fork 一个子进程来处理的,这个子进程会执行 bgsave 把当前的数据重新保存一下,然后准备发给新来的从,bgsave 的本质是读取当前内存中的数据然后保存到 rdb 文件中,这个过程涉及大量的 IO,如果直接在主进程中来处理的话,大概率会阻塞正常的请求,因此使用个子进程是个明智的选择。

    那 fork 的子进程在 bgsave 过程中如果有新的变更请求会怎么办?

    严格来说子进程出来的一瞬间,要保存的数据应该就是当时那个点的快照数据,所以是直接把当时的内存再复制一份吗?不复制的话,如果这期间又有变更改怎么办?其实这要说到写实复制(COW)机制,首先从表象上来看内存是一整块空间,其实这不太好维护,因此操作系统会把内存分成一小块一小块的,也就是内存分页管理,一页的大小一般是4K、8K或者16K等等,redis 的数据都是分布在这些页面上的,出于效率问题,fork 出来的子进程是和主进程是共享同一块的内存的,并不会复制内存,如果这期间主进程有数据变更,那么为了区分,这时最快捷的做法就是把对应的数据页重新复制一下,然后主的变更就在这个新的数据页上修改,并不会修改来的数据页,这样就保证了子进程处理的还是当时的快照。

    以上说的变更是从快照的角度来考虑的,如果从数据的一致性来说,当快照的 rdb 被从库应用之后,这期间的变更该如何同步给从库?答案是缓冲区,这个缓冲区叫做 replication buffer,主库在收到需要同步的命令之后,会把期间的变更都先保存在这个缓冲区中,这样在把 rdb 发给从库之后,紧接着会再把 replication buffer 的数据也发给从库,最终主从就保持了一致。

    replication buffer不是万能的补给剂

    我们来看看 replication buffer 持续写入的时间有多长。

    1. 我们知道主从同步的时候,主库会执行 fork 来让子进程完成相应地工作,因此子进程从开始执行 bgsave 到执行完毕这期间,变更是要写入 replication buffer 的。

    2. rdb 生成好之后,需要把它发送给从库,这个网络传输是不是也需要耗点时间,这期间也是要写入 replication buffer 的。

    3. 从库在收到 rdb 之后需要把 rdb 应用到内存里,这期间从库是阻塞的,无法提供服务,因此这期间也是要写入 replication buffer 的。

    Memandangkan penimbal replikasi adalah penimbal, saiznya terhad Jika mana-mana daripada tiga langkah di atas mengambil masa yang lama, ia akan menyebabkan penimbal replikasi berkembang dengan cepat (dengan syarat terdapat tulisan biasa). , apabila penimbal replikasi melebihi had, sambungan antara perpustakaan induk dan perpustakaan hamba akan diputuskan sambungan Selepas pemotongan, jika perpustakaan hamba disambungkan semula, replikasi akan dimulakan semula, dan kemudian langkah replikasi panjang yang sama akan disambungkan. berulang. , jadi saiz penimbal replikasi ini secara amnya perlu dinilai secara menyeluruh berdasarkan faktor seperti kelajuan menulis, jumlah penulisan sesaat dan kelajuan penghantaran rangkaian.

    Apakah yang perlu saya lakukan jika rangkaian pangkalan data hamba tidak baik dan pangkalan data induk terputus sambungan?

    Biasanya, selagi sambungan antara tuan dan hamba diwujudkan, perubahan seterusnya kepada pangkalan data induk boleh dihantar terus ke pangkalan data hamba untuk main balik terus daripada pangkalan data hamba, tetapi kami tidak dapat menjamin bahawa persekitaran rangkaian adalah 100% lancar, jadi isu pemotongan antara pangkalan data hamba dan pangkalan data induk juga mesti dipertimbangkan.

    Seharusnya sebelum redis2.8, selagi pangkalan data hamba diputuskan, walaupun hanya untuk masa yang singkat, apabila pangkalan data hamba disambungkan semula kemudian, pangkalan data utama secara langsung akan berfungsi penuh penyegerakan tanpa berfikir. Dalam versi 2.8 dan lebih baru, replikasi inkremental disokong Prinsip replikasi tambahan ialah mesti ada penimbal untuk menyimpan rekod perubahan ini dipanggil repl_backlog_buffer secara logiknya ialah penimbal cincin. ia akan ditimpa dari awal, jadi terdapat juga had saiz. Apabila perpustakaan hamba menyambung semula, perpustakaan hamba akan memberitahu perpustakaan utama: "Saya telah menyalin ke lokasi xx Selepas perpustakaan utama menerima mesej daripada perpustakaan hamba, ia mula menyemak sama ada data di lokasi xx masih." dalam repl_backlog_buffer Jika ya, , hantarkan sahaja data selepas xx ke pustaka hamba Jika tiada, tiada apa yang boleh anda lakukan dan anda hanya boleh melakukan penyegerakan penuh.

    Memerlukan pengurus

    Dalam mod tuan-hamba, jika pangkalan data induk gagal, kita boleh menaik taraf pangkalan data hamba kepada pangkalan data induk, tetapi proses ini adalah manual dan bergantung pada kuasa manusia. , tidak dapat meminimumkan kerugian, satu set pengurusan automatik dan mekanisme pilihan raya masih diperlukan Ini adalah Sentinel sendiri juga merupakan perkhidmatan, tetapi ia tidak memproses pembacaan dan penulisan data . Pengawal akan berkomunikasi dengan setiap redis pada selang masa yang tetap (operasi ping setiap contoh redis boleh menyatakan kedudukannya selagi ia bertindak balas dalam masa yang ditetapkan). Sudah tentu, Sentinel itu sendiri mungkin terputus atau rangkaian tidak tersedia, jadi secara amnya Sentinel juga akan membina gugusan Sentinel Sebaik-baiknya mempunyai bilangan gugusan ganjil, seperti 3 atau 5. Tujuan nombor ganjil ialah. terutamanya untuk pilihan raya (Minoriti mematuhi majoriti).

    Apabila sentinel gagal menerima pong tepat pada masanya selepas memulakan ping, tika redis akan ditandakan di luar talian Pada masa ini, sentinel lain juga akan menentukan semasa Adakah sentinel ini benar-benar di luar talian? Apabila kebanyakan pengawal menentukan bahawa redis ini berada di luar talian, mereka akan menendangnya keluar dari kluster Jika ia adalah pangkalan data hamba yang berada di luar talian, maka tidak mengapa pangkalan data perlu mencetuskan pilihan raya, pilihan raya bukan pilihan raya buta Ia mestilah memilih yang paling sesuai untuk dijadikan pangkalan data utama yang baharu. Perpustakaan yang paling sesuai untuk dijadikan perpustakaan utama biasanya ditentukan mengikut keutamaan berikut:

    1. Berat Setiap perpustakaan hamba sebenarnya boleh menetapkan pemberat dengan kehendak yang lebih tinggi Keutamaan diberikan kepada kemajuan penyalinan

    2. Kemajuan penyalinan dari setiap pangkalan data hamba mungkin berbeza yang mempunyai jurang data terkecil antara pangkalan data semasa dan pangkalan data utama lebih disukai

    3. ID perkhidmatan Sebenarnya, setiap instance redis mempunyai ID sendiri Jika syarat di atas adalah sama, maka perpustakaan dengan ID terkecil akan dipilih untuk dijadikan perpustakaan utama

    Skala mendatar yang lebih kukuh

    Mod induk-hamba menyelesaikan masalah satu titik kegagalan Pada masa yang sama, teknologi pemisahan baca-tulis menjadikan sokongan aplikasi lebih kuat Mod pengawal secara automatik boleh menyelia kelompok, merealisasikan pemilihan induk automatik, dan secara automatik menghapuskan nod yang rosak.

    Biasanya, apabila tekanan membaca meningkat, kita boleh menambah perpustakaan hamba untuk mengurangkannya. Tetapi bagaimana jika tekanan terhadap perpustakaan utama sangat tinggi? Ini membawa kita kepada teknologi sharding yang akan kita bincangkan seterusnya. Kita hanya perlu memotong perpustakaan utama kepada beberapa bahagian dan menggunakannya ke mesin yang berbeza. Sharding ini ialah konsep slot dalam redis Apabila sharding, redis akan dibahagikan kepada 0~16383 secara lalai, iaitu sejumlah 16384 slot Kemudian slot ini diagihkan secara sama rata untuk setiap nod shard. Slot yang mana setiap kunci harus diperuntukkan. Perkara utama ialah menggunakan CRC16 dahulu untuk mendapatkan nombor 16-bit, dan kemudian menggunakan modulo 16384 nombor ini:

    crc16(key)%16384
    Salin selepas log masuk

    客户端将缓存插槽信息,以便在每个键到达时只需计算即可确定该将其发送到哪个实例进行处理。但是客户端缓存的槽信息并不是一成不变的,比如在增加实例的时候,这时候会导致重新分片,那么原来客户端缓存的信息就会不准确,一般这时候会发生两个常见的错误,严格来说也不是错误,更像一种信息,一个叫做MOVED,一个叫做ASK。moved的意思就说,原来是实例A负责的数据,现在被迁移到了实例B,MOVED 代表的是迁移完成的,但是 ASK 代表的是正在迁移过程中,比如原来是实例A负责的部分数据,现在被迁移到了实例B,剩下的还在等待迁移中,当数据迁移完毕之后 ASK 就会变成 MOVED,然后客户端收到 MOVED 信息之后就会再次更新下本地缓存,这样下次就不会出现这两个错误了。

    Atas ialah kandungan terperinci Apakah jenis data pelik dan pengetahuan kelompok redis?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

    Label berkaitan:
    sumber:yisu.com
    Kenyataan Laman Web ini
    Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn
    Tutorial Popular
    Lagi>
    Muat turun terkini
    Lagi>
    kesan web
    Kod sumber laman web
    Bahan laman web
    Templat hujung hadapan