


Yayasan Dokumen mengumumkan ciri baharu dan penambahbaikan pada suite pejabat sumber terbuka LibreOffice
Menurut berita pada 2 Jun, pemilihan projek untuk suite pejabat sumber terbuka LibreOffice telah selesai dalam Kod Musim Panas Google (GSoC) 2023. Sebagai tindak balas kepada permintaan pengguna untuk ciri dan penambahbaikan baharu, Yayasan Dokumen telah melaksanakan projek tersebut.
Versi masa hadapan LibreOffice akan menyertakan banyak ciri baharu dan penambahbaikan yang ditunggu-tunggu oleh pengguna. Salah satunya ialah sokongan untuk import dan eksport imej APNG (Animated PNG). Berbanding dengan imej GIF, APNG menyokong lebih banyak warna dan lut sinar, serasi dengan imej PNG dan merupakan format animasi. Selain itu, kerana semua pelayar web utama menyokong APNG, pengguna kini mempunyai akses yang lebih luas kepada ciri ini.
Tambah medan carian dalam panel Pilihan LibreOffice untuk satu lagi ciri baharu yang dikehendaki pengguna. Bar carian ditambahkan pada kotak dialog pilihan alat untuk membolehkan pengguna mencari pelbagai pilihan konfigurasi dengan mudah dan mengubah suainya mengikut keperluan mereka. Penambahbaikan ini akan meningkatkan keselesaan pengguna.
Menurut pemahaman editor, versi LibreOffice akan datang juga akan menambah baik sokongan penyulitan PGP/GPG. Pada masa ini, ciri ini masih percubaan dalam LibreOffice, tetapi terdapat rancangan untuk memperbaikinya bagi memudahkan pengguna mencari kunci yang betul untuk menyulitkan dokumen. Di samping itu, menambah pertanyaan tak segerak untuk meningkatkan prestasi dan membolehkan ciri seperti carian pintar dan penapisan dinaik taraf akan meningkatkan lagi kegunaan keupayaan penyulitan.
Selain itu, versi masa hadapan LibreOffice akan memperkenalkan kaedah pemilihan ujian berasaskan pembelajaran mesin. Pendekatan ini mengurangkan beban ujian dengan memilih ujian secara bijak untuk dijalankan dalam rantaian penyepaduan berterusan. Di samping itu, terdapat rancangan untuk UNO Penulis API untuk menulis ujian unit C++, yang diperoleh daripada OpenOffice.org dan ditulis dalam Java.
Ciri dan penambahbaikan baharu ini akan dilaksanakan oleh pelajar yang berbeza semasa Google Summer of Code 2023 dan dirancang untuk dikeluarkan dalam keluaran LibreOffice akan datang. Walaupun ciri ini dijangka tidak akan tersedia pada pertengahan Ogos 2023 keluaran LibreOffice Muncul dalam versi 7.6, tetapi dijangka akan dilaksanakan pada 2024.
Atas ialah kandungan terperinci Yayasan Dokumen mengumumkan ciri baharu dan penambahbaikan pada suite pejabat sumber terbuka LibreOffice. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas



Anotasi teks ialah kerja label atau teg yang sepadan dengan kandungan tertentu dalam teks. Tujuan utamanya adalah untuk memberikan maklumat tambahan kepada teks untuk analisis dan pemprosesan yang lebih mendalam, terutamanya dalam bidang kecerdasan buatan. Anotasi teks adalah penting untuk tugas pembelajaran mesin yang diawasi dalam aplikasi kecerdasan buatan. Ia digunakan untuk melatih model AI untuk membantu memahami maklumat teks bahasa semula jadi dengan lebih tepat dan meningkatkan prestasi tugasan seperti klasifikasi teks, analisis sentimen dan terjemahan bahasa. Melalui anotasi teks, kami boleh mengajar model AI untuk mengenali entiti dalam teks, memahami konteks dan membuat ramalan yang tepat apabila data baharu yang serupa muncul. Artikel ini terutamanya mengesyorkan beberapa alat anotasi teks sumber terbuka yang lebih baik. 1.LabelStudiohttps://github.com/Hu

Anotasi imej ialah proses mengaitkan label atau maklumat deskriptif dengan imej untuk memberi makna dan penjelasan yang lebih mendalam kepada kandungan imej. Proses ini penting untuk pembelajaran mesin, yang membantu melatih model penglihatan untuk mengenal pasti elemen individu dalam imej dengan lebih tepat. Dengan menambahkan anotasi pada imej, komputer boleh memahami semantik dan konteks di sebalik imej, dengan itu meningkatkan keupayaan untuk memahami dan menganalisis kandungan imej. Anotasi imej mempunyai pelbagai aplikasi, meliputi banyak bidang, seperti penglihatan komputer, pemprosesan bahasa semula jadi dan model penglihatan graf Ia mempunyai pelbagai aplikasi, seperti membantu kenderaan dalam mengenal pasti halangan di jalan raya, dan membantu dalam proses. pengesanan dan diagnosis penyakit melalui pengecaman imej perubatan. Artikel ini terutamanya mengesyorkan beberapa alat anotasi imej sumber terbuka dan percuma yang lebih baik. 1.Makesen

Khalayak yang biasa dengan "Westworld" tahu bahawa rancangan ini terletak di taman tema dewasa berteknologi tinggi yang besar di dunia masa hadapan Robot mempunyai keupayaan tingkah laku yang serupa dengan manusia, dan boleh mengingati apa yang mereka lihat dan dengar, serta mengulangi jalan cerita teras. Setiap hari, robot ini akan ditetapkan semula dan dikembalikan kepada keadaan asalnya Selepas keluaran kertas kerja Stanford "Generative Agents: Interactive Simulacra of Human Behavior", senario ini tidak lagi terhad kepada filem dan siri TV telah berjaya menghasilkan semula ini tempat kejadian di "Bandar Maya" Smallville 》Alamat kertas peta gambaran keseluruhan: https://arxiv.org/pdf/2304.03442v1.pdf

Teknologi pengesanan dan pengecaman muka adalah teknologi yang agak matang dan digunakan secara meluas. Pada masa ini, bahasa aplikasi Internet yang paling banyak digunakan ialah JS Melaksanakan pengesanan muka dan pengecaman pada bahagian hadapan Web mempunyai kelebihan dan kekurangan berbanding dengan pengecaman muka bahagian belakang. Kelebihan termasuk mengurangkan interaksi rangkaian dan pengecaman masa nyata, yang sangat memendekkan masa menunggu pengguna dan meningkatkan pengalaman pengguna termasuk: terhad oleh saiz model, ketepatannya juga terhad. Bagaimana untuk menggunakan js untuk melaksanakan pengesanan muka di web? Untuk melaksanakan pengecaman muka di Web, anda perlu biasa dengan bahasa dan teknologi pengaturcaraan yang berkaitan, seperti JavaScript, HTML, CSS, WebRTC, dll. Pada masa yang sama, anda juga perlu menguasai visi komputer yang berkaitan dan teknologi kecerdasan buatan. Perlu diingat bahawa kerana reka bentuk bahagian Web

SOTA baharu untuk keupayaan memahami dokumen multimodal! Pasukan Alibaba mPLUG mengeluarkan kerja sumber terbuka terkini mPLUG-DocOwl1.5, yang mencadangkan satu siri penyelesaian untuk menangani empat cabaran utama pengecaman teks imej resolusi tinggi, pemahaman struktur dokumen am, arahan mengikut dan pengenalan pengetahuan luaran. Tanpa berlengah lagi, mari kita lihat kesannya dahulu. Pengecaman satu klik dan penukaran carta dengan struktur kompleks ke dalam format Markdown: Carta gaya berbeza tersedia: Pengecaman dan kedudukan teks yang lebih terperinci juga boleh dikendalikan dengan mudah: Penjelasan terperinci tentang pemahaman dokumen juga boleh diberikan: Anda tahu, "Pemahaman Dokumen " pada masa ini Senario penting untuk pelaksanaan model bahasa yang besar. Terdapat banyak produk di pasaran untuk membantu pembacaan dokumen. Sesetengah daripada mereka menggunakan sistem OCR untuk pengecaman teks dan bekerjasama dengan LLM untuk pemprosesan teks.

Izinkan saya memperkenalkan kepada anda projek sumber terbuka AIGC terkini-AnimagineXL3.1. Projek ini adalah lelaran terkini model teks-ke-imej bertema anime, yang bertujuan untuk menyediakan pengguna pengalaman penjanaan imej anime yang lebih optimum dan berkuasa. Dalam AnimagineXL3.1, pasukan pembangunan menumpukan pada mengoptimumkan beberapa aspek utama untuk memastikan model mencapai tahap prestasi dan kefungsian yang baharu. Pertama, mereka mengembangkan data latihan untuk memasukkan bukan sahaja data watak permainan daripada versi sebelumnya, tetapi juga data daripada banyak siri anime terkenal lain ke dalam set latihan. Langkah ini memperkayakan pangkalan pengetahuan model, membolehkannya memahami pelbagai gaya dan watak anime dengan lebih lengkap. AnimagineXL3.1 memperkenalkan set teg khas dan estetika baharu

FP8 dan ketepatan pengiraan titik terapung yang lebih rendah bukan lagi "paten" H100! Lao Huang mahu semua orang menggunakan INT8/INT4, dan pasukan Microsoft DeepSpeed memaksa diri mereka menjalankan FP6 pada A100 tanpa sokongan rasmi daripada Nvidia. Keputusan ujian menunjukkan bahawa kaedah baharu TC-FPx FP6 kuantisasi pada A100 adalah hampir atau kadangkala lebih pantas daripada INT4, dan mempunyai ketepatan yang lebih tinggi daripada yang terakhir. Selain itu, terdapat juga sokongan model besar hujung ke hujung, yang telah bersumberkan terbuka dan disepadukan ke dalam rangka kerja inferens pembelajaran mendalam seperti DeepSpeed. Keputusan ini juga mempunyai kesan serta-merta pada mempercepatkan model besar - di bawah rangka kerja ini, menggunakan satu kad untuk menjalankan Llama, daya pemprosesan adalah 2.65 kali lebih tinggi daripada dua kad. satu

Alamat kertas: https://arxiv.org/abs/2307.09283 Alamat kod: https://github.com/THU-MIG/RepViTRepViT berprestasi baik dalam seni bina ViT mudah alih dan menunjukkan kelebihan yang ketara. Seterusnya, kami meneroka sumbangan kajian ini. Disebutkan dalam artikel bahawa ViT ringan biasanya berprestasi lebih baik daripada CNN ringan pada tugas visual, terutamanya disebabkan oleh modul perhatian diri berbilang kepala (MSHA) mereka yang membolehkan model mempelajari perwakilan global. Walau bagaimanapun, perbezaan seni bina antara ViT ringan dan CNN ringan belum dikaji sepenuhnya. Dalam kajian ini, penulis menyepadukan ViT ringan ke dalam yang berkesan
