


Bagaimana untuk menggunakan ujian chi-square untuk analisis statistik dalam Python?
Sebagai kaedah statistik yang penting, Ujian Chi-Square ialah salah satu kaedah ujian yang biasa digunakan untuk hubungan antara pembolehubah kategori. Dalam Python, perpustakaan SciPy menyediakan fungsi chisquare untuk melaksanakan ujian chi-square. Artikel ini akan memperkenalkan prinsip, penggunaan dan contoh pelaksanaan ujian khi kuasa dua untuk membantu pembaca lebih memahami dan menggunakan ujian khi kuasa dua.
1. Prinsip ujian khi kuasa dua
Idea teras ujian khi kuasa dua adalah untuk membandingkan perbezaan antara nilai cerapan sebenar dan nilai teori antara kedua-duanya adalah signifikan, bermakna terdapat perbezaan antara kedua-dua pembolehubah. Ujian khi kuasa dua menganalisis data dalam dimensi berbeza secara berbeza Artikel ini memperkenalkan prinsip ujian khi kuasa dua dua dimensi.
Dalam kes jadual dua dimensi, ujian khi kuasa dua pertama mengandaikan bahawa tiada hubungan antara dua pembolehubah, mengira nilai jangkaan E berdasarkan andaian, kemudian mengira nilai khi kuasa dua berdasarkan nilai cerapan sebenar O dan nilai jangkaan E, dan akhirnya lulus Cari jadual atau lakukan pengiraan untuk melaksanakan ujian keertian untuk menentukan sama ada hipotesis itu benar.
Formula pengiraan khusus adalah seperti berikut:
Nilai Chi-square χ²=(O-E)²/E
Di mana O ialah nilai cerapan sebenar dan E ialah jangkaan nilai.
Jika nilai khi kuasa dua lebih besar, hubungan antara dua pembolehubah adalah lebih signifikan, dan hipotesis ditolak sebaliknya, jika nilai khi kuasa dua lebih kecil, hubungannya kurang signifikan, dan hipotesis diterima.
2. Penggunaan ujian Chi-square
- Penyediaan data
Sebelum melakukan ujian Chi-square, anda perlu menyediakan data. Secara umumnya, data wujud dalam bentuk jadual dua dimensi, termasuk kedua-dua nilai cerapan sebenar O dan nilai jangkaan E, seperti berikut:
类别A 类别B
Pembolehubah 1 70 30
Pembolehubah 2 40 60
Antaranya, 70 mewakili bilangan persilangan antara pembolehubah 1 dan kategori A.
- Kira nilai khi kuasa dua berdasarkan data
Gunakan perpustakaan SciPy dalam Python untuk mengira nilai khi kuasa dua dan nilai p yang sepadan dengan mudah. Kodnya adalah seperti berikut:
from scipy.stats import chisquare import numpy as np obs = np.array([[70, 30], [40, 60]]) #实际观测值 exp = np.array([[50, 50], [50, 50]]) #期望值 stat, pval = chisquare(obs.ravel(), f_exp=exp.ravel()) print(stat, pval)
Antaranya, fungsi chisquare digunakan untuk mengira nilai chi-square dan nilai p yang sepadan, obs dan exp masing-masing mewakili nilai cerapan sebenar dan nilai jangkaan, dan ravel () fungsi menukar tatasusunan dua dimensi kepada tatasusunan satu dimensi , parameter f_exp menentukan nilai yang dijangkakan Apabila ditetapkan kepada Tiada, obs.sum()/4 digunakan sebagai nilai yang dijangkakan.
- Menguji hipotesis
Selepas memperoleh nilai khi kuasa dua dan nilai p, anda perlu menentukan sama ada hipotesis itu benar. Secara amnya, aras keertian α ditetapkan kepada 0.05 Jika nilai p kurang daripada atau sama dengan α, hipotesis nol ditolak, menunjukkan bahawa terdapat hubungan antara kedua-dua pembolehubah jika tidak, hipotesis nol diterima, menunjukkan bahawa tiada hubungan.
Kodnya adalah seperti berikut:
alpha = 0.05 if pval <= alpha: print("Reject null hypothesis, variables are related.") else: print("Accept null hypothesis, variables are independent.")
3. Contoh pelaksanaan
Yang berikut menggunakan contoh mudah untuk menunjukkan penggunaan ujian khi kuasa dua. Katakan ujian A/B dijalankan pada tapak web e-dagang untuk menguji sama ada masa log masuk pengguna memberi kesan kepada masa menyemak imbas tapak web tersebut adalah seperti berikut:
浏览时长<10s 浏览时长>=10s
Log Masuk A 1000 2000<. 🎜>Log Masuk B 1500 2500
浏览时长<10s 浏览时长>=10s
Log Masuk B 1300 1900
obs = np.array([[1000, 2000], [1500, 2500]]) #实际观测值 exp = np.array([[1200, 1800], [1300, 1900]]) #期望值 stat, pval = chisquare(obs.ravel(), f_exp=exp.ravel()) print(stat, pval) alpha = 0.05 if pval <= alpha: print("Reject null hypothesis, variables are related.") else: print("Accept null hypothesis, variables are independent.")
Atas ialah kandungan terperinci Bagaimana untuk menggunakan ujian chi-square untuk analisis statistik dalam Python?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas



Python sesuai untuk sains data, pembangunan web dan tugas automasi, manakala C sesuai untuk pengaturcaraan sistem, pembangunan permainan dan sistem tertanam. Python terkenal dengan kesederhanaan dan ekosistem yang kuat, manakala C dikenali dengan keupayaan kawalan dan keupayaan kawalan yang mendasari.

Struktur fail pangkalan data Oracle termasuk: Fail Data: Menyimpan data sebenar. Fail Kawalan: Rekod maklumat struktur pangkalan data. Redo Fail Log: Rekod Operasi Transaksi Untuk Memastikan Konsistensi Data. Fail Parameter: Mengandungi Parameter Running Database untuk mengoptimumkan prestasi. Fail Log Arkib: Fail Log Redo Backup untuk Pemulihan Bencana.

Log masuk pangkalan data Oracle melibatkan bukan sahaja nama pengguna dan kata laluan, tetapi juga rentetan sambungan (termasuk maklumat pelayan dan kelayakan) dan kaedah pengesahan. Ia menyokong penyambung bahasa SQL*Plus dan pengaturcaraan dan menyediakan pilihan pengesahan seperti nama pengguna dan kata laluan, Kerberos dan LDAP. Kesalahan biasa termasuk ralat rentetan sambungan dan nama pengguna/kata laluan yang tidak sah, sementara amalan terbaik memberi tumpuan kepada penyatuan sambungan, pertanyaan parameter, pengindeksan, dan pengendalian kelayakan keselamatan.

Artikel ini akan menerangkan bagaimana untuk meningkatkan prestasi laman web dengan menganalisis log Apache di bawah sistem Debian. 1. Asas Analisis Log Apache Log merekodkan maklumat terperinci semua permintaan HTTP, termasuk alamat IP, timestamp, url permintaan, kaedah HTTP dan kod tindak balas. Dalam sistem Debian, log ini biasanya terletak di direktori/var/log/apache2/access.log dan /var/log/apache2/error.log. Memahami struktur log adalah langkah pertama dalam analisis yang berkesan. 2. Alat Analisis Log Anda boleh menggunakan pelbagai alat untuk menganalisis log Apache: Alat baris arahan: grep, awk, sed dan alat baris arahan lain.

Python cemerlang dalam permainan dan pembangunan GUI. 1) Pembangunan permainan menggunakan pygame, menyediakan lukisan, audio dan fungsi lain, yang sesuai untuk membuat permainan 2D. 2) Pembangunan GUI boleh memilih tkinter atau pyqt. TKInter adalah mudah dan mudah digunakan, PYQT mempunyai fungsi yang kaya dan sesuai untuk pembangunan profesional.

Tempat bersembunyi pangkalan data Oracle pada pemacu C: Pendaftaran: Gunakan editor pendaftaran untuk mencari "oracle" untuk mencari maklumat termasuk laluan pemasangan, nama perkhidmatan, dan lain -lain. Nama contoh. Tindakan yang teliti: Apabila menyahpasang Oracle, anda bukan sahaja perlu memadam fail, tetapi juga membersihkan pendaftaran dan perkhidmatan. Adalah disyorkan untuk menggunakan alat pemasangan rasmi atau mendapatkan bantuan profesional. Pengurusan Ruang: Mengoptimumkan ruang cakera untuk mengelakkan memasang Oracle pada pemacu C; Bersihkan fail sementara dengan kerap

Perbandingan antara Laravel dan Python dalam persekitaran pembangunan dan ekosistem adalah seperti berikut: 1. Persekitaran pembangunan Laravel adalah mudah, hanya PHP dan komposer diperlukan. Ia menyediakan pelbagai pakej lanjutan seperti Laravelforge, tetapi penyelenggaraan pakej lanjutan mungkin tidak tepat pada masanya. 2. Persekitaran pembangunan Python juga mudah, hanya Python dan PIP diperlukan. Ekosistem adalah besar dan meliputi pelbagai bidang, tetapi pengurusan versi dan pergantungan mungkin kompleks.

PHP dan Python masing -masing mempunyai kelebihan mereka sendiri, dan memilih mengikut keperluan projek. 1.PHP sesuai untuk pembangunan web, terutamanya untuk pembangunan pesat dan penyelenggaraan laman web. 2. Python sesuai untuk sains data, pembelajaran mesin dan kecerdasan buatan, dengan sintaks ringkas dan sesuai untuk pemula.
