Rumah pembangunan bahagian belakang Tutorial Python Bagaimana untuk menggunakan peraturan persatuan untuk perlombongan data dalam Python?

Bagaimana untuk menggunakan peraturan persatuan untuk perlombongan data dalam Python?

Jun 04, 2023 am 09:02 AM
python perlombongan data Peraturan persatuan

Python ialah bahasa pengaturcaraan yang berkuasa yang boleh digunakan untuk pelbagai tugas perlombongan data. Peraturan persatuan ialah salah satu teknik perlombongan data biasa, yang bertujuan untuk menemui perkaitan antara titik data yang berbeza untuk memahami set data dengan lebih baik. Dalam artikel ini, kita akan membincangkan cara menggunakan peraturan persatuan dalam Python untuk perlombongan data.

Apakah itu Peraturan Persatuan

Peraturan persatuan ialah teknologi perlombongan data yang digunakan untuk menemui perkaitan antara titik data yang berbeza. Ia sering digunakan dalam analisis bakul beli-belah, di mana kita boleh menemui item yang sering dibeli bersama-sama untuk menyusunnya di jabatan kedai di mana ia diletakkan.

Dalam peraturan persatuan, kami mempunyai dua jenis elemen: set item dan peraturan.

Set projek mengandungi berbilang projek dan peraturan ialah perhubungan logik. Contohnya, jika set item mengandungi A, B dan C, peraturan A->B bermakna apabila A berlaku, B juga berkemungkinan berlaku. Peraturan lain, B->C, bermakna apabila B muncul, C juga berkemungkinan muncul.

Langkah untuk menggunakan Python untuk perlombongan data peraturan persatuan

Untuk menggunakan Python untuk perlombongan data peraturan persatuan, kita perlu mengikuti langkah berikut:

1 >

Pertama, kita perlu menyediakan data yang ingin kita gunakan. Algoritma peraturan persatuan biasanya menggunakan data transaksi, seperti sejarah pembelian atau rekod interaksi dengan pelanggan.

Dalam Python, kita boleh menggunakan bingkai data panda untuk memuatkan data dan kemudian menukarnya kepada format yang sesuai untuk algoritma. Format yang biasa digunakan ialah Senarai Senarai, di mana setiap subsenarai mewakili transaksi dan elemen mewakili item dalam transaksi.

Sebagai contoh, kod berikut memuatkan fail CSV yang mengandungi contoh maklumat transaksi dan menukarkannya kepada format Senarai Senarai:

import pandas as pd

# Load data from CSV file
data = pd.read_csv('transactions.csv')

# Convert data to List of Lists format
transactions = []
for i, row in data.iterrows():
    transaction = []
    for col in data.columns:
        if row[col] == 1:
            transaction.append(col)
    transactions.append(transaction)
Salin selepas log masuk

2 Gunakan algoritma peraturan perkaitan untuk mencari peraturan

Setelah kami menukar data kepada format yang sesuai untuk algoritma, kami boleh menggunakan mana-mana algoritma peraturan persatuan untuk mencari peraturan. Algoritma yang paling biasa ialah algoritma Apriori, yang mengikut langkah berikut:

    Imbas semua transaksi untuk menentukan kekerapan item.
  • Gunakan kekerapan item untuk menjana set item calon.
  • Imbas semua transaksi untuk menentukan kekerapan set item calon.
  • Jana peraturan berdasarkan set item calon.
Dalam Python, kita boleh menggunakan perpustakaan pymining untuk melaksanakan algoritma Apriori. Berikut ialah kod sampel yang menunjukkan cara menggunakan Pymining untuk mencari set item yang kerap:

from pymining import itemmining

relim_input = itemmining.get_relim_input(transactions)
item_sets = itemmining.relim(relim_input, min_support=2)
print(item_sets)
Salin selepas log masuk

Dalam contoh ini, kami menggunakan parameter min_support, yang menentukan ambang sokongan untuk menentukan set item yang kerap. Dalam kes ini, kami menggunakan sokongan 2, yang bermaksud hanya set item yang muncul dalam sekurang-kurangnya dua transaksi dianggap set item kerap.

3. Nilaikan peraturan

Selepas mencari set item yang kerap, kami boleh menggunakannya untuk menjana peraturan. Selepas menjana peraturan, kita perlu menilai mereka untuk menentukan peraturan mana yang paling masuk akal.

Terdapat beberapa metrik penilaian biasa yang boleh digunakan untuk menilai peraturan. Dua daripada yang paling biasa ialah keyakinan dan sokongan.

Keyakinan menunjukkan ketepatan peraturan. Ia merujuk kepada kebarangkalian bahawa jika A berlaku, B juga berkemungkinan berlaku. Ia dikira seperti berikut:

keyakinan(A->B) = sokongan(A dan B) / sokongan(A)

di mana sokongan(A dan B) bermakna A muncul di masa yang sama Bilangan transaksi dengan B, sokongan(A) ialah bilangan transaksi di mana A muncul.

Sokongan menunjukkan kesejagatan peraturan. Ia merujuk kepada kebarangkalian yang dikira oleh formula berikut:

sokongan(A dan B) / total_transactions

di mana, total_transactions ialah bilangan semua transaksi.

Dalam Python, kita boleh menggunakan perpustakaan pymining untuk mengira keyakinan dan sokongan. Berikut ialah kod sampel yang menunjukkan cara mengira keyakinan peraturan:

from pymining import perftesting

rules = perftesting.association_rules(item_sets, 0.6)

for rule in rules:
    item1 = rule[0]
    item2 = rule[1]
    confidence = rule[2]
    support = rule[3]
    print(f'Rule: {item1} -> {item2}')
    print(f'Confidence: {confidence}')
    print(f'Support: {support}
')
Salin selepas log masuk

Dalam contoh ini, kami menggunakan ambang keyakinan 0.6, yang bermaksud hanya apabila keyakinan peraturan itu lebih tinggi daripada 0.6 , ia akan dianggap peraturan yang bermakna.

Ringkasan

Peraturan persatuan ialah salah satu teknik penting dalam perlombongan data, yang boleh membantu kami menemui perkaitan antara titik data. Dalam Python, kita boleh menggunakan algoritma peraturan persatuan dan metrik penilaian untuk mencari peraturan, menilai peraturan dan menganalisis serta meramal berdasarkan keputusan. Dalam amalan, kita mungkin perlu memvisualisasikan atau menyerahkan keputusan kepada model pembelajaran mesin untuk analisis lanjut bagi mendapatkan lebih banyak cerapan daripada data.

Atas ialah kandungan terperinci Bagaimana untuk menggunakan peraturan persatuan untuk perlombongan data dalam Python?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

AI Hentai Generator

AI Hentai Generator

Menjana ai hentai secara percuma.

Artikel Panas

R.E.P.O. Kristal tenaga dijelaskan dan apa yang mereka lakukan (kristal kuning)
3 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Tetapan grafik terbaik
3 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Cara Memperbaiki Audio Jika anda tidak dapat mendengar sesiapa
3 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: Cara Membuka Segala -galanya Di Myrise
4 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌

Alat panas

Notepad++7.3.1

Notepad++7.3.1

Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina

SublimeText3 versi Cina

Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1

Hantar Studio 13.0.1

Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6

Dreamweaver CS6

Alat pembangunan web visual

SublimeText3 versi Mac

SublimeText3 versi Mac

Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Adakah Mysql perlu membayar Adakah Mysql perlu membayar Apr 08, 2025 pm 05:36 PM

MySQL mempunyai versi komuniti percuma dan versi perusahaan berbayar. Versi komuniti boleh digunakan dan diubahsuai secara percuma, tetapi sokongannya terhad dan sesuai untuk aplikasi dengan keperluan kestabilan yang rendah dan keupayaan teknikal yang kuat. Edisi Enterprise menyediakan sokongan komersil yang komprehensif untuk aplikasi yang memerlukan pangkalan data yang stabil, boleh dipercayai, berprestasi tinggi dan bersedia membayar sokongan. Faktor yang dipertimbangkan apabila memilih versi termasuk kritikal aplikasi, belanjawan, dan kemahiran teknikal. Tidak ada pilihan yang sempurna, hanya pilihan yang paling sesuai, dan anda perlu memilih dengan teliti mengikut keadaan tertentu.

Cara Menggunakan MySQL Selepas Pemasangan Cara Menggunakan MySQL Selepas Pemasangan Apr 08, 2025 am 11:48 AM

Artikel ini memperkenalkan operasi pangkalan data MySQL. Pertama, anda perlu memasang klien MySQL, seperti MySqlworkbench atau Command Line Client. 1. Gunakan perintah MySQL-Uroot-P untuk menyambung ke pelayan dan log masuk dengan kata laluan akaun root; 2. Gunakan CreateTatabase untuk membuat pangkalan data, dan gunakan Pilih pangkalan data; 3. Gunakan createtable untuk membuat jadual, menentukan medan dan jenis data; 4. Gunakan InsertInto untuk memasukkan data, data pertanyaan, kemas kini data dengan kemas kini, dan padam data dengan padam. Hanya dengan menguasai langkah -langkah ini, belajar menangani masalah biasa dan mengoptimumkan prestasi pangkalan data anda boleh menggunakan MySQL dengan cekap.

Bagaimana untuk mengoptimumkan prestasi MySQL untuk aplikasi beban tinggi? Bagaimana untuk mengoptimumkan prestasi MySQL untuk aplikasi beban tinggi? Apr 08, 2025 pm 06:03 PM

Panduan Pengoptimuman Prestasi Pangkalan Data MySQL Dalam aplikasi yang berintensifkan sumber, pangkalan data MySQL memainkan peranan penting dan bertanggungjawab untuk menguruskan urus niaga besar-besaran. Walau bagaimanapun, apabila skala aplikasi berkembang, kemunculan prestasi pangkalan data sering menjadi kekangan. Artikel ini akan meneroka satu siri strategi pengoptimuman prestasi MySQL yang berkesan untuk memastikan aplikasi anda tetap cekap dan responsif di bawah beban tinggi. Kami akan menggabungkan kes-kes sebenar untuk menerangkan teknologi utama yang mendalam seperti pengindeksan, pengoptimuman pertanyaan, reka bentuk pangkalan data dan caching. 1. Reka bentuk seni bina pangkalan data dan seni bina pangkalan data yang dioptimumkan adalah asas pengoptimuman prestasi MySQL. Berikut adalah beberapa prinsip teras: Memilih jenis data yang betul dan memilih jenis data terkecil yang memenuhi keperluan bukan sahaja dapat menjimatkan ruang penyimpanan, tetapi juga meningkatkan kelajuan pemprosesan data.

Hadidb: Pangkalan data yang ringan dan berskala mendatar di Python Hadidb: Pangkalan data yang ringan dan berskala mendatar di Python Apr 08, 2025 pm 06:12 PM

Hadidb: Pangkalan data Python yang ringan, tinggi, Hadidb (Hadidb) adalah pangkalan data ringan yang ditulis dalam Python, dengan tahap skalabilitas yang tinggi. Pasang HadIdb menggunakan pemasangan PIP: Pengurusan Pengguna PipInstallHadidB Buat Pengguna: CreateUser () Kaedah untuk membuat pengguna baru. Kaedah pengesahan () mengesahkan identiti pengguna. dariHadidb.OperationImportuserer_Obj = user ("admin", "admin") user_obj.

Adakah mysql memerlukan internet Adakah mysql memerlukan internet Apr 08, 2025 pm 02:18 PM

MySQL boleh berjalan tanpa sambungan rangkaian untuk penyimpanan dan pengurusan data asas. Walau bagaimanapun, sambungan rangkaian diperlukan untuk interaksi dengan sistem lain, akses jauh, atau menggunakan ciri -ciri canggih seperti replikasi dan clustering. Di samping itu, langkah -langkah keselamatan (seperti firewall), pengoptimuman prestasi (pilih sambungan rangkaian yang betul), dan sandaran data adalah penting untuk menyambung ke Internet.

Kaedah Navicat untuk melihat kata laluan pangkalan data MongoDB Kaedah Navicat untuk melihat kata laluan pangkalan data MongoDB Apr 08, 2025 pm 09:39 PM

Tidak mustahil untuk melihat kata laluan MongoDB secara langsung melalui Navicat kerana ia disimpan sebagai nilai hash. Cara mendapatkan kata laluan yang hilang: 1. Tetapkan semula kata laluan; 2. Periksa fail konfigurasi (mungkin mengandungi nilai hash); 3. Semak Kod (boleh kata laluan Hardcode).

Bolehkah Mysql Workbench menyambung ke Mariadb Bolehkah Mysql Workbench menyambung ke Mariadb Apr 08, 2025 pm 02:33 PM

MySQL Workbench boleh menyambung ke MariaDB, dengan syarat bahawa konfigurasi adalah betul. Mula -mula pilih "MariaDB" sebagai jenis penyambung. Dalam konfigurasi sambungan, tetapkan host, port, pengguna, kata laluan, dan pangkalan data dengan betul. Apabila menguji sambungan, periksa bahawa perkhidmatan MariaDB dimulakan, sama ada nama pengguna dan kata laluan betul, sama ada nombor port betul, sama ada firewall membenarkan sambungan, dan sama ada pangkalan data itu wujud. Dalam penggunaan lanjutan, gunakan teknologi penyatuan sambungan untuk mengoptimumkan prestasi. Kesilapan biasa termasuk kebenaran yang tidak mencukupi, masalah sambungan rangkaian, dan lain -lain. Apabila kesilapan debugging, dengan teliti menganalisis maklumat ralat dan gunakan alat penyahpepijatan. Mengoptimumkan konfigurasi rangkaian dapat meningkatkan prestasi

Adakah mysql memerlukan pelayan Adakah mysql memerlukan pelayan Apr 08, 2025 pm 02:12 PM

Untuk persekitaran pengeluaran, pelayan biasanya diperlukan untuk menjalankan MySQL, atas alasan termasuk prestasi, kebolehpercayaan, keselamatan, dan skalabilitas. Pelayan biasanya mempunyai perkakasan yang lebih kuat, konfigurasi berlebihan dan langkah keselamatan yang lebih ketat. Untuk aplikasi kecil, rendah, MySQL boleh dijalankan pada mesin tempatan, tetapi penggunaan sumber, risiko keselamatan dan kos penyelenggaraan perlu dipertimbangkan dengan teliti. Untuk kebolehpercayaan dan keselamatan yang lebih besar, MySQL harus digunakan di awan atau pelayan lain. Memilih konfigurasi pelayan yang sesuai memerlukan penilaian berdasarkan beban aplikasi dan jumlah data.

See all articles