


Berat! ChatGPT versi Huawei akan dikeluarkan tidak lama lagi, dipanggil 'Pangu Chat' [dengan ramalan pembangunan industri kecerdasan buatan]
Susulan keluaran sistem dialog kecerdasan buatan seperti ChatGPT dan Wen Xinyiyan, Huawei bakal melancarkan produk kecerdasan buatan baharu.
Baru-baru ini, Huawei mengumumkan bahawa ia akan mengeluarkan produk model berskala besar 100 bilion peringkat berbilang modal pada bulan Julai, yang dipanggil "Pangu Chat Produk ini ditujukan terutamanya kepada pelanggan kerajaan dan perusahaan To B/G".
Dilaporkan bahawa projek model besar Pangu telah berjaya diwujudkan dalam Huawei Cloud pada November 2020. Untuk kedudukan model besar Pangu, pasukan dalaman Huawei menetapkan tiga prinsip reka bentuk teras yang paling kritikal: pertama, model mestilah besar dan boleh menyerap sejumlah besar data, kedua, struktur rangkaian mesti kukuh untuk benar-benar mengeluarkan prestasi; daripada model; ketiga, ia mesti mempunyai cemerlang Keupayaan generalisasi benar-benar boleh digunakan untuk senario kerja dalam semua bidang kehidupan.
Kelebihan Huawei berbanding pengeluar lain terletak pada rantaian industrinya yang lengkap dan keupayaan penggunaan kuasa pengkomputeran yang kukuh. Huawei secara dalaman menyatakan bahawa lebih daripada 4,000 kad GPU/TPU digunakan untuk latihan model besar setiap tahun, dan kos kuasa pengkomputeran model besar dalam tiga tahun adalah setinggi 960 juta yuan. Menurut data daripada kertas kerja yang diterbitkan oleh Huawei, parameter model besar PanGu-Σ Huawei adalah sehingga 1.085 trilion dan dibangunkan berdasarkan rangka kerja MindSpore yang dibangunkan sendiri oleh Huawei. Dari segi dialog, model besar PanGu-Σ mungkin sudah hampir dengan GPT-3.5.
Ramalan Pembangunan Industri Kepintaran Buatan
Dengan perkembangan pesat kecerdasan buatan, tahap pembelajaran mesin dan algoritma terus bertambah baik, dan industri seperti pengkomputeran awan, data besar, Internet Perkara dan pemanduan autonomi terus meningkatkan bilangan dan keperluan prestasi untuk tiruan. cip kecerdasan, memacu pembangunan cip kecerdasan buatan Industri ini terus berkembang. Sektor teknologi teras kecerdasan buatan termasuk cip kecerdasan buatan, litar bersepadu, penglihatan komputer, pembelajaran mesin, bahasa semula jadi, teknologi biometrik, pemprosesan data besar, dsb., dan cip kecerdasan buatan ialah industri baru muncul berdasarkan kecerdasan buatan dan cip semikonduktor; antaranya, pada 2021, skala industri kecerdasan buatan China ialah 744.2 bilion yuan, memacu saiz pasaran industri kepada 151.3 bilion yuan.
Terima kasih kepada kemajuan teknologi AI seperti pembelajaran mendalam dan aplikasi mendalam Al dalam pelbagai industri, industri ini berkembang pesat. Menurut ramalan statistik Sullivan, saiz pasaran industri kecerdasan buatan global pada 2019 adalah kira-kira 191.7 bilion dolar AS pada mulanya dianggarkan bahawa skala kecerdasan buatan global akan mencapai 233.5 bilion yuan pada tahun 2020.
Ahli akademik Bai Chunli menegaskan bahawa kecerdasan buatan akan membawa kepada peringkat kritikal pembangunan dalam tempoh 5-10 tahun akan datang. Pada peringkat ini, kecerdasan buatan negara saya perlu menumpukan pada menyelesaikan tiga masalah utama: teknologi teras yang lemah dan keupayaan asas, ekosistem pembangunan perindustrian yang tidak sempurna, dan kekurangan bakat kelas atas yang serius. Beliau mencadangkan agar kita memberi permainan sepenuhnya kepada kelebihan sistem nasional baharu di bawah keadaan ekonomi pasaran sosialis, mengukuhkan reka bentuk peringkat atasan, mengukuhkan penyelarasan keseluruhan dan susun atur sistem, menginovasi model latihan bakat, dan mengukuhkan pembinaan undang-undang, peraturan, norma etika, dan sistem dasar.
Kumpulan Maklumat APP Ekonomi yang berpandangan ke hadapan
Data di atas merujuk kepada Institut Penyelidikan Industri Qianzhan.
Pada masa yang sama, Institut Penyelidikan Industri Qianzhan juga menyediakan perundingan dan penyelesaian lain.
Atas ialah kandungan terperinci Berat! ChatGPT versi Huawei akan dikeluarkan tidak lama lagi, dipanggil 'Pangu Chat' [dengan ramalan pembangunan industri kecerdasan buatan]. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas



Laman web ini melaporkan pada 27 Jun bahawa Jianying ialah perisian penyuntingan video yang dibangunkan oleh FaceMeng Technology, anak syarikat ByteDance Ia bergantung pada platform Douyin dan pada asasnya menghasilkan kandungan video pendek untuk pengguna platform tersebut Windows , MacOS dan sistem pengendalian lain. Jianying secara rasmi mengumumkan peningkatan sistem keahliannya dan melancarkan SVIP baharu, yang merangkumi pelbagai teknologi hitam AI, seperti terjemahan pintar, penonjolan pintar, pembungkusan pintar, sintesis manusia digital, dsb. Dari segi harga, yuran bulanan untuk keratan SVIP ialah 79 yuan, yuran tahunan ialah 599 yuan (nota di laman web ini: bersamaan dengan 49.9 yuan sebulan), langganan bulanan berterusan ialah 59 yuan sebulan, dan langganan tahunan berterusan ialah 499 yuan setahun (bersamaan dengan 41.6 yuan sebulan) . Di samping itu, pegawai yang dipotong juga menyatakan bahawa untuk meningkatkan pengalaman pengguna, mereka yang telah melanggan VIP asal

Tingkatkan produktiviti, kecekapan dan ketepatan pembangun dengan menggabungkan penjanaan dipertingkatkan semula dan memori semantik ke dalam pembantu pengekodan AI. Diterjemah daripada EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG, pengarang JanakiramMSV. Walaupun pembantu pengaturcaraan AI asas secara semulajadi membantu, mereka sering gagal memberikan cadangan kod yang paling relevan dan betul kerana mereka bergantung pada pemahaman umum bahasa perisian dan corak penulisan perisian yang paling biasa. Kod yang dijana oleh pembantu pengekodan ini sesuai untuk menyelesaikan masalah yang mereka bertanggungjawab untuk menyelesaikannya, tetapi selalunya tidak mematuhi piawaian pengekodan, konvensyen dan gaya pasukan individu. Ini selalunya menghasilkan cadangan yang perlu diubah suai atau diperhalusi agar kod itu diterima ke dalam aplikasi

Untuk mengetahui lebih lanjut tentang AIGC, sila layari: 51CTOAI.x Komuniti https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou berbeza daripada bank soalan tradisional yang boleh dilihat di mana-mana sahaja di Internet memerlukan pemikiran di luar kotak. Model Bahasa Besar (LLM) semakin penting dalam bidang sains data, kecerdasan buatan generatif (GenAI) dan kecerdasan buatan. Algoritma kompleks ini meningkatkan kemahiran manusia dan memacu kecekapan dan inovasi dalam banyak industri, menjadi kunci kepada syarikat untuk kekal berdaya saing. LLM mempunyai pelbagai aplikasi Ia boleh digunakan dalam bidang seperti pemprosesan bahasa semula jadi, penjanaan teks, pengecaman pertuturan dan sistem pengesyoran. Dengan belajar daripada sejumlah besar data, LLM dapat menjana teks

Model Bahasa Besar (LLM) dilatih pada pangkalan data teks yang besar, di mana mereka memperoleh sejumlah besar pengetahuan dunia sebenar. Pengetahuan ini dibenamkan ke dalam parameter mereka dan kemudiannya boleh digunakan apabila diperlukan. Pengetahuan tentang model ini "diperbaharui" pada akhir latihan. Pada akhir pra-latihan, model sebenarnya berhenti belajar. Selaraskan atau perhalusi model untuk mempelajari cara memanfaatkan pengetahuan ini dan bertindak balas dengan lebih semula jadi kepada soalan pengguna. Tetapi kadangkala pengetahuan model tidak mencukupi, dan walaupun model boleh mengakses kandungan luaran melalui RAG, ia dianggap berfaedah untuk menyesuaikan model kepada domain baharu melalui penalaan halus. Penalaan halus ini dilakukan menggunakan input daripada anotasi manusia atau ciptaan LLM lain, di mana model menemui pengetahuan dunia sebenar tambahan dan menyepadukannya

Editor |ScienceAI Question Answering (QA) set data memainkan peranan penting dalam mempromosikan penyelidikan pemprosesan bahasa semula jadi (NLP). Set data QA berkualiti tinggi bukan sahaja boleh digunakan untuk memperhalusi model, tetapi juga menilai dengan berkesan keupayaan model bahasa besar (LLM), terutamanya keupayaan untuk memahami dan menaakul tentang pengetahuan saintifik. Walaupun pada masa ini terdapat banyak set data QA saintifik yang meliputi bidang perubatan, kimia, biologi dan bidang lain, set data ini masih mempunyai beberapa kekurangan. Pertama, borang data adalah agak mudah, kebanyakannya adalah soalan aneka pilihan. Ia mudah dinilai, tetapi mengehadkan julat pemilihan jawapan model dan tidak dapat menguji sepenuhnya keupayaan model untuk menjawab soalan saintifik. Sebaliknya, Soal Jawab terbuka

Pembelajaran mesin ialah cabang penting kecerdasan buatan yang memberikan komputer keupayaan untuk belajar daripada data dan meningkatkan keupayaan mereka tanpa diprogramkan secara eksplisit. Pembelajaran mesin mempunyai pelbagai aplikasi dalam pelbagai bidang, daripada pengecaman imej dan pemprosesan bahasa semula jadi kepada sistem pengesyoran dan pengesanan penipuan, dan ia mengubah cara hidup kita. Terdapat banyak kaedah dan teori yang berbeza dalam bidang pembelajaran mesin, antaranya lima kaedah yang paling berpengaruh dipanggil "Lima Sekolah Pembelajaran Mesin". Lima sekolah utama ialah sekolah simbolik, sekolah sambungan, sekolah evolusi, sekolah Bayesian dan sekolah analogi. 1. Simbolisme, juga dikenali sebagai simbolisme, menekankan penggunaan simbol untuk penaakulan logik dan ekspresi pengetahuan. Aliran pemikiran ini percaya bahawa pembelajaran adalah proses penolakan terbalik, melalui sedia ada

Editor |. KX Dalam bidang penyelidikan dan pembangunan ubat, meramalkan pertalian pengikatan protein dan ligan dengan tepat dan berkesan adalah penting untuk pemeriksaan dan pengoptimuman ubat. Walau bagaimanapun, kajian semasa tidak mengambil kira peranan penting maklumat permukaan molekul dalam interaksi protein-ligan. Berdasarkan ini, penyelidik dari Universiti Xiamen mencadangkan rangka kerja pengekstrakan ciri berbilang mod (MFE) novel, yang buat pertama kalinya menggabungkan maklumat mengenai permukaan protein, struktur dan jujukan 3D, dan menggunakan mekanisme perhatian silang untuk membandingkan ciri modaliti yang berbeza penjajaran. Keputusan eksperimen menunjukkan bahawa kaedah ini mencapai prestasi terkini dalam meramalkan pertalian mengikat protein-ligan. Tambahan pula, kajian ablasi menunjukkan keberkesanan dan keperluan maklumat permukaan protein dan penjajaran ciri multimodal dalam rangka kerja ini. Penyelidikan berkaitan bermula dengan "S

Menurut berita dari laman web ini pada 5 Julai, GlobalFoundries mengeluarkan kenyataan akhbar pada 1 Julai tahun ini, mengumumkan pemerolehan teknologi power gallium nitride (GaN) Tagore Technology dan portfolio harta intelek, dengan harapan dapat mengembangkan bahagian pasarannya dalam kereta dan Internet of Things dan kawasan aplikasi pusat data kecerdasan buatan untuk meneroka kecekapan yang lebih tinggi dan prestasi yang lebih baik. Memandangkan teknologi seperti AI generatif terus berkembang dalam dunia digital, galium nitrida (GaN) telah menjadi penyelesaian utama untuk pengurusan kuasa yang mampan dan cekap, terutamanya dalam pusat data. Laman web ini memetik pengumuman rasmi bahawa semasa pengambilalihan ini, pasukan kejuruteraan Tagore Technology akan menyertai GLOBALFOUNDRIES untuk membangunkan lagi teknologi gallium nitride. G
