


Contoh pemprosesan bahasa semula jadi dalam Python: pembahagian perkataan
Bahasa Python ialah salah satu bahasa pengaturcaraan yang paling popular hari ini, dan kit alat pemprosesan bahasa semula jadi yang berkuasa juga telah menjadi kelebihan uniknya. Natural Language Processing (NLP) ialah hala tuju penyelidikan penting dalam bidang kecerdasan buatan dan mempunyai prospek aplikasi yang luas. Artikel ini terutamanya akan memperkenalkan salah satu contoh pemprosesan bahasa semula jadi dalam Python - pembahagian perkataan.
Tokenisasi ialah tugas asas dalam pemprosesan bahasa semula jadi Tujuannya adalah untuk membahagikan teks kepada unit perbendaharaan kata yang bermakna, seperti perkataan dan tanda baca dalam bahasa Inggeris, dan Perkataan, perkataan, dsb. Pembahagian perkataan ialah langkah pertama dalam pemprosesan bahasa semula jadi dan juga merupakan asas untuk tugasan seperti penandaan sebahagian daripada pertuturan, pengecaman entiti bernama dan analisis sentimen yang akan dilaksanakan dalam langkah seterusnya.
Terdapat banyak alat pembahagian perkataan yang biasa digunakan dalam Python, seperti nltk, spacy dan jieba Dalam artikel ini, kami memperkenalkan penggunaan alat pembahagian perkataan jieba yang biasa digunakan.
Pertama, kita perlu memasang alat pembahagian perkataan jieba. Hanya laksanakan arahan berikut:
!pip install jieba
Selepas pemasangan selesai, kita boleh melakukan pembahagian perkataan pada teks. Katakan kita mempunyai teks bahasa Cina:
text = "自然语言处理是人工智能领域的一个重要方向,其目的是让计算机能够理解自然语言及其含义。"
Kita boleh menggunakan kaedah cut()
jieba untuk membahagikannya Kod sampel adalah seperti berikut: kaedah
import jieba text = "自然语言处理是人工智能领域的一个重要方向,其目的是让计算机能够理解自然语言及其含义。" seg_list = jieba.cut(text, cut_all=False) print(" ".join(seg_list))
cut()
menerima dua parameter, yang pertama. satu Parameter ialah kandungan teks yang akan dibahagikan Parameter kedua cut_all
menunjukkan sama ada hendak menggunakan pembahagian perkataan mod penuh (iaitu, semua perkataan yang boleh dilaksanakan adalah dibahagikan penggunaan pembahagian kata mod tepat. False
自然语言 处理 是 人工智能 领域 的 一个 重要 方向 , 其 目的 是 让 计算机 能够 理解 自然语言 及 其 含义 。
: jieba.cut()
- Kaedah mengembalikan penjana, dan anda boleh terus menggunakan gelung for untuk mengeluarkan hasil segmentasi perkataan secara berulang; Kaedah
cut()
- ialah penyegmen perkataan mod campuran yang boleh membahagikan perkataan secara tepat dan mengimbas semua kemungkinan gabungan perkataan dalam teks; Kaedah
cut_for_search()
dan akan Mengembalikan hasil pembahagian perkataan jenis senarai. lcut()
lcut_for_search()
Selain itu, alat pembahagian perkataan jieba juga menyokong kamus tersuai, yang boleh meningkatkan ketepatan pembahagian perkataan. Sebagai contoh, kami boleh mentakrifkan kamus yang mengandungi istilah berkaitan domain, bernama dan memanggil kaedah
import jieba # 加载自定义词典 jieba.load_userdict("newdict.txt") text = "自然语言处理是人工智能领域的一个重要方向,其目的是让计算机能够理解自然语言及其含义。" seg_list = jieba.cut(text, cut_all=False) print(" ".join(seg_list))
newdict.txt
Melalui contoh mudah ini, kami memahami Learn cara menggunakan alat segmentasi perkataan jieba untuk pemprosesan bahasa semula jadi dalam Python. Segmen perkataan adalah salah satu tugas asas NLP Menguasai penggunaan teknologi segmentasi perkataan juga sangat penting untuk merealisasikan tugas NLP yang kompleks. Melalui pembelajaran dan amalan berterusan, saya percaya bahawa semua orang boleh menguasai teknologi pemprosesan bahasa semula jadi Python dengan lebih baik dan memberikan bantuan yang lebih baik untuk memproses pelbagai data teks. load_userdict()
Atas ialah kandungan terperinci Contoh pemprosesan bahasa semula jadi dalam Python: pembahagian perkataan. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas











PHP terutamanya pengaturcaraan prosedur, tetapi juga menyokong pengaturcaraan berorientasikan objek (OOP); Python menyokong pelbagai paradigma, termasuk pengaturcaraan OOP, fungsional dan prosedur. PHP sesuai untuk pembangunan web, dan Python sesuai untuk pelbagai aplikasi seperti analisis data dan pembelajaran mesin.

PHP sesuai untuk pembangunan web dan prototaip pesat, dan Python sesuai untuk sains data dan pembelajaran mesin. 1.Php digunakan untuk pembangunan web dinamik, dengan sintaks mudah dan sesuai untuk pembangunan pesat. 2. Python mempunyai sintaks ringkas, sesuai untuk pelbagai bidang, dan mempunyai ekosistem perpustakaan yang kuat.

Untuk menjalankan kod python dalam teks luhur, anda perlu memasang plug-in python terlebih dahulu, kemudian buat fail .py dan tulis kod itu, dan akhirnya tekan Ctrl B untuk menjalankan kod, dan output akan dipaparkan dalam konsol.

PHP berasal pada tahun 1994 dan dibangunkan oleh Rasmuslerdorf. Ia pada asalnya digunakan untuk mengesan pelawat laman web dan secara beransur-ansur berkembang menjadi bahasa skrip sisi pelayan dan digunakan secara meluas dalam pembangunan web. Python telah dibangunkan oleh Guidovan Rossum pada akhir 1980 -an dan pertama kali dikeluarkan pada tahun 1991. Ia menekankan kebolehbacaan dan kesederhanaan kod, dan sesuai untuk pengkomputeran saintifik, analisis data dan bidang lain.

Python lebih sesuai untuk pemula, dengan lengkung pembelajaran yang lancar dan sintaks ringkas; JavaScript sesuai untuk pembangunan front-end, dengan lengkung pembelajaran yang curam dan sintaks yang fleksibel. 1. Sintaks Python adalah intuitif dan sesuai untuk sains data dan pembangunan back-end. 2. JavaScript adalah fleksibel dan digunakan secara meluas dalam pengaturcaraan depan dan pelayan.

Golang lebih baik daripada Python dari segi prestasi dan skalabiliti. 1) Ciri-ciri jenis kompilasi Golang dan model konkurensi yang cekap menjadikannya berfungsi dengan baik dalam senario konvensional yang tinggi. 2) Python, sebagai bahasa yang ditafsirkan, melaksanakan perlahan -lahan, tetapi dapat mengoptimumkan prestasi melalui alat seperti Cython.

Kod penulisan dalam Kod Visual Studio (VSCode) adalah mudah dan mudah digunakan. Hanya pasang VSCode, buat projek, pilih bahasa, buat fail, tulis kod, simpan dan jalankannya. Kelebihan vscode termasuk sumber lintas platform, bebas dan terbuka, ciri-ciri yang kuat, sambungan yang kaya, dan ringan dan cepat.

Running Python Code di Notepad memerlukan Python Executable dan NPPExec plug-in untuk dipasang. Selepas memasang Python dan menambahkan laluannya, konfigurasikan perintah "python" dan parameter "{current_directory} {file_name}" dalam plug-in nppexec untuk menjalankan kod python melalui kunci pintasan "f6" dalam notepad.
