


Bagaimana untuk menggunakan bahasa Go untuk pembangunan pembelajaran mendalam?
Dalam beberapa tahun kebelakangan ini, dengan perkembangan pesat bidang kecerdasan buatan, pembelajaran mendalam telah menjadi salah satu teknologi yang mendapat perhatian dan nilai aplikasi yang sangat tinggi. Walau bagaimanapun, pembangunan pembelajaran mendalam biasanya memerlukan kuasa pengkomputeran yang berkuasa dan pelaksanaan algoritma yang kompleks, yang menimbulkan cabaran besar kepada pembangun. Nasib baik, bahasa Go, sebagai bahasa pengaturcaraan yang pantas, cekap, boleh disusun dan boleh dilaksanakan, menyediakan beberapa perpustakaan dan alatan yang berkuasa untuk membantu pembangun melaksanakan pembangunan pembelajaran mendalam yang lebih ringkas dan cekap. Artikel ini akan memperkenalkan cara menggunakan bahasa Go untuk pembangunan pembelajaran mendalam.
Pengenalan kepada Pembelajaran Mendalam
Pembelajaran mendalam ialah subset bidang pembelajaran mesin yang memfokuskan pada membina rangkaian saraf yang besar untuk menyelesaikan masalah yang lebih kompleks. Ia bukan sahaja boleh melaksanakan tugas seperti pengelasan, regresi dan pengelompokan, tetapi juga secara automatik mengekstrak ciri dan corak dalam data. Pembelajaran mendalam mempunyai pelbagai aplikasi, termasuk pemprosesan imej, pemprosesan bahasa semula jadi, pengecaman suara dan perlombongan data.
Pembelajaran Mendalam dalam Bahasa Go
Sebagai bahasa untuk sistem komputer moden, idea pengaturcaraan sistem bahasa Go dan prestasi cekap memberikan banyak kelebihan untuk pelaksanaan pembelajaran mendalam. Bahasa Go menyokong konkurensi tinggi, skalabiliti yang baik, ringkas dan mudah dibaca, dsb., jadi ia mempunyai potensi besar dalam pembangunan pembelajaran mendalam.
Pembelajaran mendalam dalam bahasa Go dilaksanakan terutamanya melalui penggunaan perpustakaan pembelajaran mendalam. Berikut ialah beberapa perpustakaan pembelajaran mendalam yang biasa.
- Gorgonia
Gorgonia ialah rangka kerja pembelajaran mendalam berdasarkan bahasa Go, yang boleh membantu kami membina dan melatih rangkaian saraf. Pada terasnya, Gorgonia ialah graf pengiraan simbolik. Ini bermakna kita boleh menentukan pembolehubah, tensor dan operasi dalam graf pengiraan dan kemudian menggunakan pembezaan automatik untuk mengira kecerunan. Gorgonia juga menyediakan banyak ciri berguna seperti rangkaian neural convolutional, rangkaian neural berulang dan rangkaian adversarial generatif.
Berikut ialah program contoh mudah untuk membina, melatih dan menguji rangkaian neural yang disambungkan sepenuhnya pada set data MNIST.
package main import ( "fmt" "log" "github.com/gonum/matrix/mat64" "gorgonia.org/gorgonia" "gorgonia.org/tensor" ) func main() { // 1. Load data data, labels, err := loadData() if err != nil { log.Fatal(err) } // 2. Create neural network g := gorgonia.NewGraph() x := gorgonia.NewMatrix(g, tensor.Float64, gorgonia.WithShape(len(data), len(data[0])), gorgonia.WithName("x")) y := gorgonia.NewMatrix(g, tensor.Float64, gorgonia.WithShape(len(labels), 1), gorgonia.WithName("y")) w := gorgonia.NewMatrix(g, tensor.Float64, gorgonia.WithShape(len(data[0]), 10), gorgonia.WithName("w")) b := gorgonia.NewVector(g, tensor.Float64, gorgonia.WithShape(10), gorgonia.WithName("b")) pred := gorgonia.Must(gorgonia.Mul(x, w)) pred = gorgonia.Must(gorgonia.Add(pred, b)) loss := gorgonia.Must(gorgonia.Mean(gorgonia.Must(gorgonia.SoftMax(pred)), gorgonia.Must(gorgonia.ArgMax(y, 1)))) if _, err := gorgonia.Grad(loss, w, b); err != nil { log.Fatal(err) } // 3. Train neural network machine := gorgonia.NewTapeMachine(g) solver := gorgonia.NewAdamSolver() for i := 0; i < 100; i++ { if err := machine.RunAll(); err != nil { log.Fatal(err) } if err := solver.Step(gorgonia.Nodes{w, b}, gorgonia.Nodes{loss}); err != nil { log.Fatal(err) } machine.Reset() } // 4. Test neural network test, testLabels, err := loadTest() if err != nil { log.Fatal(err) } testPred := gorgonia.Must(gorgonia.Mul(gorgonia.NewMatrix(g, tensor.Float64, gorgonia.WithShape(len(test), len(test[0])), test, gorgonia.WithName("test")), w)) testPred = gorgonia.Must(gorgonia.Add(testPred, b)) testLoss, err := gorgonia.SoftMax(gorgonia.Must(gorgonia.Mul(gorgonia.OnesLike(testPred), testPred)), 1) if err != nil { log.Fatal(err) } fmt.Println("Accuracy:", accuracy(testPred.Value().Data().([]float64), testLabels)) } func accuracy(preds mat64.Matrix, labels []float64) float64 { correct := 0 for i := 0; i < preds.Rows(); i++ { if preds.At(i, int(labels[i])) == mat64.Max(preds.RowView(i)) { correct++ } } return float64(correct) / float64(preds.Rows()) } func loadData() (data *mat64.Dense, labels *mat64.Dense, err error) { // ... } func loadTest() (test *mat64.Dense, labels []float64, err error) { // ... }
- Golearn
Golearn ialah perpustakaan pembelajaran mesin yang ditulis dalam bahasa Go. Perpustakaan ini mengandungi banyak algoritma pembelajaran mesin klasik, seperti pepohon keputusan, mesin vektor sokongan dan K -algoritma jiran terdekat. Selain algoritma pembelajaran mesin klasik, Golearn turut menyertakan beberapa algoritma pembelajaran mendalam, seperti neuron, rangkaian saraf konvolusi dan rangkaian saraf berulang.
Berikut ialah program contoh untuk membina, melatih dan menguji perceptron berbilang lapisan pada set data XOR.
package main import ( "fmt" "github.com/sjwhitworth/golearn/base" "github.com/sjwhitworth/golearn/linear_models" "github.com/sjwhitworth/golearn/neural" ) func main() { // 1. Load data data, err := base.ParseCSVToInstances("xor.csv", false) if err != nil { panic(err) } // 2. Create neural network net := neural.NewMultiLayerPerceptron([]int{2, 2, 1}, []string{"relu", "sigmoid"}) net.Initialize() // 3. Train neural network trainer := neural.NewBackpropTrainer(net, 0.1, 0.5) for i := 0; i < 5000; i++ { trainer.Train(data) } // 4. Test neural network meta := base.NewLazilyFilteredInstances(data, func(r base.FixedDataGridRow) bool { return r.RowString(0) != "0" && r.RowString(1) != "0" }) preds, err := net.Predict(meta) if err != nil { panic(err) } fmt.Println(preds) }
- Gorgonia/XGBoost
XGBoost ialah perpustakaan penggalak kecerunan yang terkenal yang boleh digunakan untuk pelbagai tugas pembelajaran mesin, seperti pengelasan, regresi dan pemeringkatan. Dalam bahasa Go, kita boleh menggunakan Gorgonia/XGBoost sebagai antara muka bahasa Go XGBoost. Perpustakaan ini menyediakan beberapa fungsi yang memudahkan pembangunan pembelajaran mendalam menggunakan XGBoost.
Berikut ialah program contoh untuk membina, melatih dan menguji pengelas XGBoost pada set data XOR.
package main import ( "fmt" "gorgonia.org/xgboost" ) func main() { // 1. Load data train, err := xgboost.ReadCSVFile("xor.csv") if err != nil { panic(err) } // 2. Create XGBoost classifier param := xgboost.NewClassificationParams() param.MaxDepth = 2 model, err := xgboost.Train(train, param) if err != nil { panic(err) } // 3. Test XGBoost classifier test, err := xgboost.ReadCSVFile("xor.csv") if err != nil { panic(err) } preds, err := model.Predict(test) if err != nil { panic(err) } fmt.Println(preds) }
Kesimpulan
Artikel ini memperkenalkan cara menggunakan bahasa Go untuk pembangunan pembelajaran mendalam dan memperkenalkan beberapa perpustakaan pembelajaran mendalam biasa. Sebagai bahasa pengaturcaraan yang pantas, cekap, boleh disusun dan boleh dilaksanakan, bahasa Go telah menunjukkan kelebihan yang besar dalam pembangunan pembelajaran mendalam. Jika anda mencari cara yang cekap untuk melakukan pembangunan pembelajaran mendalam, menggunakan bahasa Go patut dicuba.
Atas ialah kandungan terperinci Bagaimana untuk menggunakan bahasa Go untuk pembangunan pembelajaran mendalam?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas



Ditulis sebelum ini, hari ini kita membincangkan bagaimana teknologi pembelajaran mendalam boleh meningkatkan prestasi SLAM berasaskan penglihatan (penyetempatan dan pemetaan serentak) dalam persekitaran yang kompleks. Dengan menggabungkan kaedah pengekstrakan ciri dalam dan pemadanan kedalaman, di sini kami memperkenalkan sistem SLAM visual hibrid serba boleh yang direka untuk meningkatkan penyesuaian dalam senario yang mencabar seperti keadaan cahaya malap, pencahayaan dinamik, kawasan bertekstur lemah dan seks yang teruk. Sistem kami menyokong berbilang mod, termasuk konfigurasi monokular, stereo, monokular-inersia dan stereo-inersia lanjutan. Selain itu, ia juga menganalisis cara menggabungkan SLAM visual dengan kaedah pembelajaran mendalam untuk memberi inspirasi kepada penyelidikan lain. Melalui percubaan yang meluas pada set data awam dan data sampel sendiri, kami menunjukkan keunggulan SL-SLAM dari segi ketepatan kedudukan dan keteguhan penjejakan.

Editor |. Kulit Lobak Sejak pengeluaran AlphaFold2 yang berkuasa pada tahun 2021, saintis telah menggunakan model ramalan struktur protein untuk memetakan pelbagai struktur protein dalam sel, menemui ubat dan melukis "peta kosmik" setiap interaksi protein yang diketahui. Baru-baru ini, Google DeepMind mengeluarkan model AlphaFold3, yang boleh melakukan ramalan struktur bersama untuk kompleks termasuk protein, asid nukleik, molekul kecil, ion dan sisa yang diubah suai. Ketepatan AlphaFold3 telah dipertingkatkan dengan ketara berbanding dengan banyak alat khusus pada masa lalu (interaksi protein-ligan, interaksi asid protein-nukleik, ramalan antibodi-antigen). Ini menunjukkan bahawa dalam satu rangka kerja pembelajaran mendalam yang bersatu, adalah mungkin untuk dicapai

Dalam Go, anda boleh menggunakan ungkapan biasa untuk memadankan cap masa: susun rentetan ungkapan biasa, seperti yang digunakan untuk memadankan cap masa ISO8601: ^\d{4}-\d{2}-\d{2}T \d{ 2}:\d{2}:\d{2}(\.\d+)?(Z|[+-][0-9]{2}:[0-9]{2})$ . Gunakan fungsi regexp.MatchString untuk menyemak sama ada rentetan sepadan dengan ungkapan biasa.

Dalam Go, mesej WebSocket boleh dihantar menggunakan pakej gorila/soket web. Langkah khusus: Wujudkan sambungan WebSocket. Hantar mesej teks: Panggil WriteMessage(websocket.TextMessage,[]bait("Mesej")). Hantar mesej binari: panggil WriteMessage(websocket.BinaryMessage,[]bait{1,2,3}).

Bahasa Go dan Go adalah entiti yang berbeza dengan ciri yang berbeza. Go (juga dikenali sebagai Golang) terkenal dengan kesesuaiannya, kelajuan penyusunan pantas, pengurusan memori dan kelebihan merentas platform. Kelemahan bahasa Go termasuk ekosistem yang kurang kaya berbanding bahasa lain, sintaks yang lebih ketat dan kekurangan penaipan dinamik.

Kebocoran memori boleh menyebabkan memori program Go terus meningkat dengan: menutup sumber yang tidak lagi digunakan, seperti fail, sambungan rangkaian dan sambungan pangkalan data. Gunakan rujukan yang lemah untuk mengelakkan kebocoran memori dan objek sasaran untuk pengumpulan sampah apabila ia tidak lagi dirujuk dengan kuat. Menggunakan go coroutine, memori tindanan coroutine akan dikeluarkan secara automatik apabila keluar untuk mengelakkan kebocoran memori.

Dalam Golang, pembalut ralat membolehkan anda membuat ralat baharu dengan menambahkan maklumat kontekstual kepada ralat asal. Ini boleh digunakan untuk menyatukan jenis ralat yang dilemparkan oleh perpustakaan atau komponen yang berbeza, memudahkan penyahpepijatan dan pengendalian ralat. Langkah-langkahnya adalah seperti berikut: Gunakan fungsi ralat. Balut untuk membalut ralat asal kepada ralat baharu. Ralat baharu mengandungi maklumat kontekstual daripada ralat asal. Gunakan fmt.Printf untuk mengeluarkan ralat yang dibalut, memberikan lebih konteks dan kebolehtindakan. Apabila mengendalikan pelbagai jenis ralat, gunakan fungsi ralat. Balut untuk menyatukan jenis ralat.

Ciri baharu fungsi PHP sangat memudahkan proses pembangunan, termasuk: Fungsi anak panah: Menyediakan sintaks fungsi tanpa nama yang ringkas untuk mengurangkan lebihan kod. Pengisytiharan jenis harta: Tentukan jenis untuk sifat kelas, tingkatkan kebolehbacaan dan kebolehpercayaan kod, dan secara automatik melakukan semakan jenis pada masa jalan. operator null: Memeriksa dan mengendalikan nilai nol secara ringkas, boleh digunakan untuk mengendalikan parameter pilihan.
