


Menggunakan model besar untuk mencipta paradigma baharu untuk latihan ringkasan teks
1. Tugasan teks
Kandungan utama artikel ini ialah perbincangan tentang kaedah ringkasan teks generatif, memfokuskan pada paradigma latihan terkini menggunakan pembelajaran kontrastif dan model besar. Ia terutamanya melibatkan dua artikel, satu ialah BRIO: Bringing Order to Abstractive Summarization (2022), yang menggunakan pembelajaran kontrastif untuk memperkenalkan tugasan pemeringkatan dalam model generatif; yang satu lagi ialah On Learning to Summarize with Large Language Models as References (2023), dalam Based pada BRIO, model besar diperkenalkan lagi untuk menjana data latihan berkualiti tinggi.
2. Kaedah dan isu latihan ringkasan teks generatif
Latihan ringkasan teks generatif secara amnya menggunakan anggaran persamaan maksimum. Pertama, Pengekod digunakan untuk mengekod dokumen, dan kemudian Penyahkod digunakan untuk meramalkan secara rekursif setiap teks dalam ringkasan Sasaran yang sesuai ialah jawapan standard ringkasan yang dibina secara buatan. Matlamat menjana teks pada setiap kedudukan yang paling hampir dengan jawapan standard diwakili oleh fungsi pengoptimuman:
Masalah dengan pendekatan ini ialah, Latihan dan tugas sebenar hiliran tidak konsisten. Berbilang ringkasan boleh dijana untuk dokumen, dan ia mungkin berkualiti atau tidak berkualiti. MLE memerlukan sasaran pemasangan mestilah satu-satunya jawapan standard. Jurang ini juga menyukarkan model ringkasan teks untuk membandingkan kelebihan dan kekurangan dua ringkasan dengan kualiti yang berbeza secara berkesan. Sebagai contoh, satu eksperimen telah dijalankan dalam kertas BRIO Model ringkasan teks umum mempunyai hasil yang sangat buruk apabila menilai susunan relatif dua ringkasan dengan kualiti yang berbeza.
3. Model generatif memperkenalkan pembelajaran kontrastif peringkat
Untuk menyelesaikan masalah yang wujud dalam model ringkasan teks generatif tradisional , BRIO: Bringing Order to Abstractive Summarization (2022) mencadangkan untuk memperkenalkan lagi tugas pembelajaran kontrastif ke dalam model generatif untuk meningkatkan keupayaan model untuk menyusun ringkasan kualiti yang berbeza.
BRIO menggunakan latihan pelbagai tugas. Tugasan pertama menggunakan kaedah yang sama seperti model generatif tradisional, iaitu, menyesuaikan jawapan standard melalui MLE. Tugas kedua ialah tugas pembelajaran kontrastif, di mana model ringkasan teks pra-latihan menggunakan carian pancaran untuk menghasilkan dua hasil yang berbeza, dan ROUGE digunakan untuk menilai yang mana lebih baik antara dua hasil yang dijana dan jawapan standard untuk menentukan yang mana dua Menyusun abstrak. Kedua-dua keputusan ringkasan adalah input ke dalam Dekoder untuk mendapatkan kebarangkalian kedua-dua ringkasan Melalui kehilangan pembelajaran perbandingan, model boleh memberikan skor yang lebih tinggi kepada ringkasan berkualiti tinggi. Kaedah pengiraan kerugian pembelajaran perbandingan dalam bahagian ini adalah seperti berikut:
Telah didapati bahawa kualiti ringkasan yang dihasilkan menggunakan model besar seperti GPT adalah lebih baik daripada yang dihasilkan oleh manusia, jadi model besar seperti itu semakin popular. Dalam kes ini, menggunakan jawapan standard yang dijana secara buatan mengehadkan siling keberkesanan model. Oleh itu, On Learning to Summarize with Large Language Models as References (2023) mencadangkan untuk menggunakan model besar seperti GPT untuk menjana data latihan untuk membimbing pembelajaran model ringkasan.
Artikel ini mencadangkan 3 cara untuk menggunakan model besar untuk menjana sampel latihan.
Yang pertama ialah menggunakan ringkasan yang dijana oleh model besar secara langsung untuk menggantikan ringkasan yang dijana secara manual, yang setara dengan secara langsung menyesuaikan keupayaan penjanaan ringkasan model besar dengan model hiliran MLE.
Kaedah kedua ialah GPTScore, yang kebanyakannya menggunakan model besar yang telah dilatih untuk menjaringkan ringkasan yang dijana, menggunakan skor ini sebagai asas untuk menilai kualiti ringkasan, dan kemudian menggunakan kaedah yang serupa dengan BRIO untuk latihan pembelajaran perbandingan. GPTScore ialah kaedah yang dicadangkan dalam Gptscore: Evaluate as you want (2023) untuk menilai kualiti teks yang dijana berdasarkan model besar.
Kaedah ketiga ialah GPTRank Kaedah ini membenarkan model besar mengisih setiap ringkasan dan bukannya menskor secara langsung, dan biarkan model besar menentukan kedudukan ringkasan. . Penjelasan logik untuk mendapatkan hasil pengisihan yang lebih munasabah.
5. Ringkasan
Keupayaan model besar dalam penjanaan ringkasan semakin diiktiraf secara meluas Oleh itu, menggunakan model besar sebagai penjana sasaran pemasangan model ringkasan untuk menggantikan hasil anotasi manual akan menjadi trend pembangunan masa hadapan. Pada masa yang sama, menggunakan pembelajaran perbandingan kedudukan untuk melatih penjanaan ringkasan membolehkan model ringkasan melihat kualiti ringkasan dan mengatasi pemasangan titik asal, yang juga penting untuk menambah baik kesan model ringkasan.
Atas ialah kandungan terperinci Menggunakan model besar untuk mencipta paradigma baharu untuk latihan ringkasan teks. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas



Bayangkan model kecerdasan buatan yang bukan sahaja mempunyai keupayaan untuk mengatasi pengkomputeran tradisional, tetapi juga mencapai prestasi yang lebih cekap pada kos yang lebih rendah. Ini bukan fiksyen sains, DeepSeek-V2[1], model MoE sumber terbuka paling berkuasa di dunia ada di sini. DeepSeek-V2 ialah gabungan model bahasa pakar (MoE) yang berkuasa dengan ciri-ciri latihan ekonomi dan inferens yang cekap. Ia terdiri daripada 236B parameter, 21B daripadanya digunakan untuk mengaktifkan setiap penanda. Berbanding dengan DeepSeek67B, DeepSeek-V2 mempunyai prestasi yang lebih kukuh, sambil menjimatkan 42.5% kos latihan, mengurangkan cache KV sebanyak 93.3% dan meningkatkan daya pemprosesan penjanaan maksimum kepada 5.76 kali. DeepSeek ialah sebuah syarikat yang meneroka kecerdasan buatan am

AI memang mengubah matematik. Baru-baru ini, Tao Zhexuan, yang telah mengambil perhatian terhadap isu ini, telah memajukan keluaran terbaru "Buletin Persatuan Matematik Amerika" (Buletin Persatuan Matematik Amerika). Memfokuskan pada topik "Adakah mesin akan mengubah matematik?", ramai ahli matematik menyatakan pendapat mereka Seluruh proses itu penuh dengan percikan api, tegar dan menarik. Penulis mempunyai barisan yang kuat, termasuk pemenang Fields Medal Akshay Venkatesh, ahli matematik China Zheng Lejun, saintis komputer NYU Ernest Davis dan ramai lagi sarjana terkenal dalam industri. Dunia AI telah berubah secara mendadak Anda tahu, banyak artikel ini telah dihantar setahun yang lalu.

Awal bulan ini, penyelidik dari MIT dan institusi lain mencadangkan alternatif yang sangat menjanjikan kepada MLP - KAN. KAN mengatasi MLP dari segi ketepatan dan kebolehtafsiran. Dan ia boleh mengatasi prestasi MLP berjalan dengan bilangan parameter yang lebih besar dengan bilangan parameter yang sangat kecil. Sebagai contoh, penulis menyatakan bahawa mereka menggunakan KAN untuk menghasilkan semula keputusan DeepMind dengan rangkaian yang lebih kecil dan tahap automasi yang lebih tinggi. Khususnya, MLP DeepMind mempunyai kira-kira 300,000 parameter, manakala KAN hanya mempunyai kira-kira 200 parameter. KAN mempunyai asas matematik yang kukuh seperti MLP berdasarkan teorem penghampiran universal, manakala KAN berdasarkan teorem perwakilan Kolmogorov-Arnold. Seperti yang ditunjukkan dalam rajah di bawah, KAN telah

Boston Dynamics Atlas secara rasmi memasuki era robot elektrik! Semalam, Atlas hidraulik hanya "menangis" menarik diri daripada peringkat sejarah Hari ini, Boston Dynamics mengumumkan bahawa Atlas elektrik sedang berfungsi. Nampaknya dalam bidang robot humanoid komersial, Boston Dynamics berazam untuk bersaing dengan Tesla. Selepas video baharu itu dikeluarkan, ia telah pun ditonton oleh lebih sejuta orang dalam masa sepuluh jam sahaja. Orang lama pergi dan peranan baru muncul. Ini adalah keperluan sejarah. Tidak dinafikan bahawa tahun ini adalah tahun letupan robot humanoid. Netizen mengulas: Kemajuan robot telah menjadikan majlis pembukaan tahun ini kelihatan seperti manusia, dan tahap kebebasan adalah jauh lebih besar daripada manusia Tetapi adakah ini benar-benar bukan filem seram? Pada permulaan video, Atlas berbaring dengan tenang di atas tanah, seolah-olah terlentang. Apa yang berikut adalah rahang-jatuh

Prestasi JAX, yang dipromosikan oleh Google, telah mengatasi Pytorch dan TensorFlow dalam ujian penanda aras baru-baru ini, menduduki tempat pertama dalam 7 penunjuk. Dan ujian tidak dilakukan pada TPU dengan prestasi JAX terbaik. Walaupun dalam kalangan pembangun, Pytorch masih lebih popular daripada Tensorflow. Tetapi pada masa hadapan, mungkin lebih banyak model besar akan dilatih dan dijalankan berdasarkan platform JAX. Model Baru-baru ini, pasukan Keras menanda aras tiga hujung belakang (TensorFlow, JAX, PyTorch) dengan pelaksanaan PyTorch asli dan Keras2 dengan TensorFlow. Pertama, mereka memilih satu set arus perdana

Video terbaru robot Tesla Optimus dikeluarkan, dan ia sudah boleh berfungsi di kilang. Pada kelajuan biasa, ia mengisih bateri (bateri 4680 Tesla) seperti ini: Pegawai itu juga mengeluarkan rupanya pada kelajuan 20x - pada "stesen kerja" kecil, memilih dan memilih dan memilih: Kali ini ia dikeluarkan Salah satu sorotan video itu ialah Optimus menyelesaikan kerja ini di kilang, sepenuhnya secara autonomi, tanpa campur tangan manusia sepanjang proses. Dan dari perspektif Optimus, ia juga boleh mengambil dan meletakkan bateri yang bengkok, memfokuskan pada pembetulan ralat automatik: Berkenaan tangan Optimus, saintis NVIDIA Jim Fan memberikan penilaian yang tinggi: Tangan Optimus adalah robot lima jari di dunia paling cerdik. Tangannya bukan sahaja boleh disentuh

Pengesanan objek ialah masalah yang agak matang dalam sistem pemanduan autonomi, antaranya pengesanan pejalan kaki adalah salah satu algoritma terawal untuk digunakan. Penyelidikan yang sangat komprehensif telah dijalankan dalam kebanyakan kertas kerja. Walau bagaimanapun, persepsi jarak menggunakan kamera fisheye untuk pandangan sekeliling agak kurang dikaji. Disebabkan herotan jejari yang besar, perwakilan kotak sempadan standard sukar dilaksanakan dalam kamera fisheye. Untuk mengurangkan perihalan di atas, kami meneroka kotak sempadan lanjutan, elips dan reka bentuk poligon am ke dalam perwakilan kutub/sudut dan mentakrifkan metrik mIOU pembahagian contoh untuk menganalisis perwakilan ini. Model fisheyeDetNet yang dicadangkan dengan bentuk poligon mengatasi model lain dan pada masa yang sama mencapai 49.5% mAP pada set data kamera fisheye Valeo untuk pemanduan autonomi

Kertas kerja ini meneroka masalah mengesan objek dengan tepat dari sudut pandangan yang berbeza (seperti perspektif dan pandangan mata burung) dalam pemanduan autonomi, terutamanya cara mengubah ciri dari perspektif (PV) kepada ruang pandangan mata burung (BEV) dengan berkesan dilaksanakan melalui modul Transformasi Visual (VT). Kaedah sedia ada secara amnya dibahagikan kepada dua strategi: penukaran 2D kepada 3D dan 3D kepada 2D. Kaedah 2D-ke-3D meningkatkan ciri 2D yang padat dengan meramalkan kebarangkalian kedalaman, tetapi ketidakpastian yang wujud dalam ramalan kedalaman, terutamanya di kawasan yang jauh, mungkin menimbulkan ketidaktepatan. Manakala kaedah 3D ke 2D biasanya menggunakan pertanyaan 3D untuk mencuba ciri 2D dan mempelajari berat perhatian bagi kesesuaian antara ciri 3D dan 2D melalui Transformer, yang meningkatkan masa pengiraan dan penggunaan.
