


Penjelasan terperinci tentang seaborn, perpustakaan visualisasi data dalam Python
Penjelasan terperinci tentang seaborn, perpustakaan visualisasi data dalam Python
Dalam bidang sains data, visualisasi data merupakan kemahiran yang sangat penting. Sebagai bahasa yang serba boleh, Python telah menjadi pilihan pertama ramai saintis data. Terdapat banyak perpustakaan visualisasi dalam Python, salah satu yang popular ialah seaborn.
seaborn ialah perpustakaan visualisasi data lanjutan Python yang dibangunkan berdasarkan perpustakaan matplotlib. Ia menyediakan antara muka visual yang lebih cantik dan ringkas, sesuai untuk menganalisis dan memerhati data yang kompleks.
seaborn menyediakan banyak alat visualisasi, termasuk:
- Plot pengedaran
- Peta haba
- Plot regresi linear
- Pengagihan bersama carta
- Carta statistik
Seterusnya, kami akan menganalisis alat visualisasi ini secara terperinci.
- Ploting Pengedaran
Ploting Pengedaran ialah teknik visualisasi yang digunakan untuk memahami pengedaran data. seaborn menyediakan pelbagai kaedah lukisan pengedaran, termasuk:
a. Histogram
Histogram ialah kaedah visual untuk memaparkan pengedaran data kepada bilangan selang tertentu, dan kemudian Kira kekerapan data dalam setiap selang dan plot frekuensi pada graf. Dalam seaborn, anda boleh menggunakan fungsi distplot() untuk melukis histogram.
b. Anggaran Ketumpatan Kernel (KDE)
Anggaran ketumpatan kernel ialah kaedah yang mendapatkan ketumpatan kebarangkalian taburan data dengan melicinkan data. Di seaborn, anda boleh menggunakan fungsi kdeplot() untuk melukis plot KDE, dan anda boleh menambah garisan KDE pada histogram.
c. Carta garisan
Carta garis ialah teknik visualisasi yang menunjukkan cara jumlah data berubah apabila pembolehubah berubah. Dalam seaborn, anda boleh menggunakan fungsi lineplot() untuk melukis carta garis.
- Peta haba
Peta haba ialah teknik visualisasi yang mempersembahkan matriks data dalam bentuk blok warna. Di seaborn, anda boleh menggunakan fungsi heatmap() untuk melukis peta haba.
- Plot Regresi Linear
Plot Regresi Linear ialah teknik visualisasi yang digunakan untuk menunjukkan hubungan antara dua pembolehubah. Di seaborn, anda boleh menggunakan fungsi regplot() untuk melukis plot regresi linear.
- Plot pengedaran bersama
Plot pengedaran bersama ialah teknik visualisasi yang secara serentak memaparkan taburan dua pembolehubah dan hubungan antara mereka. Di seaborn, anda boleh menggunakan fungsi jointplot() untuk melukis plot pengedaran bersama.
- Carta statistik
Carta statistik ialah teknologi visualisasi yang memaparkan ciri statistik data. Dalam seaborn, anda boleh menggunakan fungsi countplot() untuk melukis histogram, dan fungsi boxplot() untuk melukis plot kotak, dsb.
Apabila menggunakan seaborn untuk visualisasi data, beberapa prapemprosesan data diperlukan, seperti normalisasi data, pembersihan data, dsb. Selain itu, anda juga perlu mempelajari prinsip reka bentuk dalam lukisan, seperti reka bentuk label, tajuk, dan lain-lain pada paksi mendatar dan menegak.
Secara keseluruhannya, seaborn ialah perpustakaan visualisasi data Python dengan fungsi berkuasa dan antara muka yang cantik, yang boleh membantu saintis data memahami data mereka dengan cepat dan tepat serta membuat keputusan yang sepadan.
Atas ialah kandungan terperinci Penjelasan terperinci tentang seaborn, perpustakaan visualisasi data dalam Python. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas



Python sesuai untuk sains data, pembangunan web dan tugas automasi, manakala C sesuai untuk pengaturcaraan sistem, pembangunan permainan dan sistem tertanam. Python terkenal dengan kesederhanaan dan ekosistem yang kuat, manakala C dikenali dengan keupayaan kawalan dan keupayaan kawalan yang mendasari.

Artikel ini akan menerangkan bagaimana untuk meningkatkan prestasi laman web dengan menganalisis log Apache di bawah sistem Debian. 1. Asas Analisis Log Apache Log merekodkan maklumat terperinci semua permintaan HTTP, termasuk alamat IP, timestamp, url permintaan, kaedah HTTP dan kod tindak balas. Dalam sistem Debian, log ini biasanya terletak di direktori/var/log/apache2/access.log dan /var/log/apache2/error.log. Memahami struktur log adalah langkah pertama dalam analisis yang berkesan. 2. Alat Analisis Log Anda boleh menggunakan pelbagai alat untuk menganalisis log Apache: Alat baris arahan: grep, awk, sed dan alat baris arahan lain.

Python cemerlang dalam permainan dan pembangunan GUI. 1) Pembangunan permainan menggunakan pygame, menyediakan lukisan, audio dan fungsi lain, yang sesuai untuk membuat permainan 2D. 2) Pembangunan GUI boleh memilih tkinter atau pyqt. TKInter adalah mudah dan mudah digunakan, PYQT mempunyai fungsi yang kaya dan sesuai untuk pembangunan profesional.

Perbandingan antara Laravel dan Python dalam persekitaran pembangunan dan ekosistem adalah seperti berikut: 1. Persekitaran pembangunan Laravel adalah mudah, hanya PHP dan komposer diperlukan. Ia menyediakan pelbagai pakej lanjutan seperti Laravelforge, tetapi penyelenggaraan pakej lanjutan mungkin tidak tepat pada masanya. 2. Persekitaran pembangunan Python juga mudah, hanya Python dan PIP diperlukan. Ekosistem adalah besar dan meliputi pelbagai bidang, tetapi pengurusan versi dan pergantungan mungkin kompleks.

PHP dan Python masing -masing mempunyai kelebihan mereka sendiri, dan memilih mengikut keperluan projek. 1.PHP sesuai untuk pembangunan web, terutamanya untuk pembangunan pesat dan penyelenggaraan laman web. 2. Python sesuai untuk sains data, pembelajaran mesin dan kecerdasan buatan, dengan sintaks ringkas dan sesuai untuk pemula.

Artikel ini membincangkan kaedah pengesanan serangan DDoS. Walaupun tiada kes permohonan langsung "debiansniffer" ditemui, kaedah berikut boleh digunakan untuk pengesanan serangan DDOS: Teknologi Pengesanan Serangan DDo Sebagai contoh, skrip Python yang digabungkan dengan perpustakaan Pyshark dan Colorama boleh memantau trafik rangkaian dalam masa nyata dan mengeluarkan makluman. Pengesanan berdasarkan analisis statistik: dengan menganalisis ciri statistik trafik rangkaian, seperti data

Artikel ini akan membimbing anda tentang cara mengemas kini sijil NginxSSL anda pada sistem Debian anda. Langkah 1: Pasang Certbot terlebih dahulu, pastikan sistem anda mempunyai pakej CertBot dan Python3-CertBot-Nginx yang dipasang. Jika tidak dipasang, sila laksanakan arahan berikut: sudoapt-getupdateudoapt-getinstallcertbotpython3-certbot-nginx Langkah 2: Dapatkan dan konfigurasikan sijil Gunakan perintah certbot untuk mendapatkan sijil let'Sencrypt dan konfigurasikan nginx: sudoCertBot-ninx ikuti

Fungsi Readdir dalam sistem Debian adalah panggilan sistem yang digunakan untuk membaca kandungan direktori dan sering digunakan dalam pengaturcaraan C. Artikel ini akan menerangkan cara mengintegrasikan Readdir dengan alat lain untuk meningkatkan fungsinya. Kaedah 1: Menggabungkan Program Bahasa C dan Pipeline Pertama, tulis program C untuk memanggil fungsi Readdir dan output hasilnya:#termasuk#termasuk#includeintMain (intargc, char*argv []) {dir*dir; structdirent*entry; if (argc! = 2) {
