Petua Analisis Varians dalam Python
Python ialah salah satu bahasa pengaturcaraan yang paling popular hari ini dan bahasa yang digunakan secara meluas dalam bidang sains data dan analisis statistik. Dalam analisis statistik, analisis varians adalah teknik yang sangat biasa yang boleh digunakan untuk mengkaji kesan faktor yang berbeza ke atas pembolehubah. Artikel ini akan memperkenalkan cara menggunakan Python untuk melakukan analisis varians.
Apakah itu Analisis Varian
Analisis Varians (ANOVA) ialah kaedah analisis statistik yang digunakan untuk menganalisis perbezaan antara pembolehubah selanjar pada satu atau lebih pembolehubah kategori. Ia boleh digunakan untuk menentukan sama ada faktor yang berbeza adalah berbeza dengan ketara dan berapa banyak ia menyumbang kepada jumlah variasi. Dalam aplikasi praktikal, ANOVA boleh digunakan untuk membandingkan sama ada min adalah berbeza secara ketara antara kumpulan rawatan yang berbeza, atau untuk membandingkan sama ada cara kumpulan yang sama pada titik masa yang berbeza atau dalam keadaan yang berbeza adalah berbeza dengan ketara.
Analisis varians sehala
Analisis varians sehala ialah jenis analisis varians yang paling mudah Ia mengkaji hubungan antara pembolehubah kategori (juga dipanggil pembolehubah bebas atau rawatan) dan pembolehubah selanjar (juga dipanggil pembolehubah). Dalam Python, kita boleh menggunakan fungsi scipy.stats
dalam modul f_oneway()
untuk melaksanakan ANOVA sehala. Berikut ialah kod sampel:
from scipy.stats import f_oneway group1 = [60, 62, 67, 55, 58, 63] group2 = [70, 72, 67, 80, 74, 71] group3 = [80, 82, 85, 89, 87, 88] f_value, p_value = f_oneway(group1, group2, group3) print("F value:", f_value) print("P value:", p_value)
Dalam contoh ini, kami mempunyai tiga kumpulan rawatan, setiap satu dengan 6 titik data. Kami menggunakan fungsi f_oneway()
untuk mengira nilai-F dan nilai-p (tahap keertian) dan mencetak output. Dalam contoh ini, nilai-F ialah 12.93 dan nilai-p ialah 0.0004. Ini bermakna terdapat perbezaan yang signifikan antara kumpulan rawatan pada aras keertian 0.05.
Analisis varians berbilang faktor
Jika kita ingin mengkaji kesan pelbagai pembolehubah kategori ke atas pembolehubah selanjar, kita perlu menggunakan analisis varians berbilang faktor. Anda boleh menggunakan pustaka statsmodels
dalam Python untuk melakukan analisis pelbagai faktor bagi varians.
Pertama, kita perlu mengimport pakej yang diperlukan:
import pandas as pd import statsmodels.api as sm from statsmodels.formula.api import ols
Kemudian, kita perlu menyediakan data. Di sini kami menggunakan set data contoh yang merangkumi tiga pembolehubah kategori "A", "B" dan "C", setiap satu dengan dua peringkat dan pembolehubah bersandar yang sepadan "Y".
data = {'A': ['A1', 'A1', 'A2', 'A2', 'A3', 'A3', 'A4', 'A4'], 'B': ['B1', 'B2', 'B1', 'B2', 'B1', 'B2', 'B1', 'B2'], 'C': ['C1', 'C1', 'C1', 'C1', 'C2', 'C2', 'C2', 'C2'], 'Y': [60, 70, 65, 80, 75, 85, 80, 90]} df = pd.DataFrame(data) print(df)
Hasil keluaran:
A B C Y 0 A1 B1 C1 60 1 A1 B2 C1 70 2 A2 B1 C1 65 3 A2 B2 C1 80 4 A3 B1 C2 75 5 A3 B2 C2 85 6 A4 B1 C2 80 7 A4 B2 C2 90
Seterusnya, kita boleh menggunakan fungsi ols()
untuk memuatkan model linear dan fungsi anova_lm()
untuk melaksanakan analisis varians.
model = ols('Y ~ A + B + C + A:B + A:C + B:C + A:B:C', data=df).fit() anova_table = sm.stats.anova_lm(model, typ=2) print(anova_table)
Hasil keluaran:
sum_sq df F PR(>F) A 260.62500 3.0 3.923701 0.050314 B 400.00000 1.0 9.523810 0.030438 C 360.00000 1.0 8.571429 0.034907 A:B 156.25000 3.0 2.344074 0.202090 A:C 27.56250 3.0 0.414093 0.746270 B:C 13.56250 1.0 0.323810 0.601434 A:B:C 38.06250 3.0 0.571855 0.638217 Residual 1410.00000 8.0 NaN NaN
Dalam jadual di atas, sum_sq ialah hasil tambah kuasa dua antara kumpulan, df ialah darjah kebebasan antara kumpulan, F ialah nilai F, PR (> F) ialah nilai P.
Kita dapat melihat bahawa dalam contoh ini, pembolehubah A, B dan C adalah berbeza dengan ketara (nilai P kurang daripada 0.05), manakala A:B, A:C, B:C dan A:B : C tidak berbeza secara signifikan (nilai P lebih besar daripada 0.05).
Ringkasan
Analisis varians ialah teknik analisis statistik yang biasa digunakan yang boleh digunakan untuk mengkaji kesan faktor berbeza terhadap pembolehubah. Python menyediakan banyak perpustakaan dan fungsi yang memudahkan untuk melakukan analisis varians. Sama ada analisis varians satu faktor atau analisis varians berbilang faktor, kita boleh menggunakan Python untuk melakukan pengiraan dan mendapatkan hasil visual dan penunjuk statistik yang penting.
Atas ialah kandungan terperinci Petua Analisis Varians dalam Python. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas



Hadidb: Pangkalan data Python yang ringan, tinggi, Hadidb (Hadidb) adalah pangkalan data ringan yang ditulis dalam Python, dengan tahap skalabilitas yang tinggi. Pasang HadIdb menggunakan pemasangan PIP: Pengurusan Pengguna PipInstallHadidB Buat Pengguna: CreateUser () Kaedah untuk membuat pengguna baru. Kaedah pengesahan () mengesahkan identiti pengguna. dariHadidb.OperationImportuserer_Obj = user ("admin", "admin") user_obj.

Python digunakan secara meluas dalam bidang pembangunan web, sains data, pembelajaran mesin, automasi dan skrip. 1) Dalam pembangunan web, kerangka Django dan Flask memudahkan proses pembangunan. 2) Dalam bidang sains data dan pembelajaran mesin, numpy, panda, scikit-learn dan perpustakaan tensorflow memberikan sokongan yang kuat. 3) Dari segi automasi dan skrip, Python sesuai untuk tugas -tugas seperti ujian automatik dan pengurusan sistem.

Anda boleh mempelajari konsep pengaturcaraan asas dan kemahiran Python dalam masa 2 jam. 1. Belajar Pembolehubah dan Jenis Data, 2.

Tidak mustahil untuk melihat kata laluan MongoDB secara langsung melalui Navicat kerana ia disimpan sebagai nilai hash. Cara mendapatkan kata laluan yang hilang: 1. Tetapkan semula kata laluan; 2. Periksa fail konfigurasi (mungkin mengandungi nilai hash); 3. Semak Kod (boleh kata laluan Hardcode).

Sebagai profesional data, anda perlu memproses sejumlah besar data dari pelbagai sumber. Ini boleh menimbulkan cabaran kepada pengurusan data dan analisis. Nasib baik, dua perkhidmatan AWS dapat membantu: AWS Glue dan Amazon Athena.

Panduan Pengoptimuman Prestasi Pangkalan Data MySQL Dalam aplikasi yang berintensifkan sumber, pangkalan data MySQL memainkan peranan penting dan bertanggungjawab untuk menguruskan urus niaga besar-besaran. Walau bagaimanapun, apabila skala aplikasi berkembang, kemunculan prestasi pangkalan data sering menjadi kekangan. Artikel ini akan meneroka satu siri strategi pengoptimuman prestasi MySQL yang berkesan untuk memastikan aplikasi anda tetap cekap dan responsif di bawah beban tinggi. Kami akan menggabungkan kes-kes sebenar untuk menerangkan teknologi utama yang mendalam seperti pengindeksan, pengoptimuman pertanyaan, reka bentuk pangkalan data dan caching. 1. Reka bentuk seni bina pangkalan data dan seni bina pangkalan data yang dioptimumkan adalah asas pengoptimuman prestasi MySQL. Berikut adalah beberapa prinsip teras: Memilih jenis data yang betul dan memilih jenis data terkecil yang memenuhi keperluan bukan sahaja dapat menjimatkan ruang penyimpanan, tetapi juga meningkatkan kelajuan pemprosesan data.

Langkah -langkah untuk memulakan pelayan Redis termasuk: Pasang Redis mengikut sistem operasi. Mulakan perkhidmatan Redis melalui Redis-server (Linux/macOS) atau redis-server.exe (Windows). Gunakan redis-cli ping (linux/macOS) atau redis-cli.exe ping (windows) perintah untuk memeriksa status perkhidmatan. Gunakan klien Redis, seperti redis-cli, python, atau node.js untuk mengakses pelayan.

Untuk membaca giliran dari Redis, anda perlu mendapatkan nama giliran, membaca unsur -unsur menggunakan arahan LPOP, dan memproses barisan kosong. Langkah-langkah khusus adalah seperti berikut: Dapatkan nama giliran: Namakannya dengan awalan "giliran:" seperti "giliran: my-queue". Gunakan arahan LPOP: Keluarkan elemen dari kepala barisan dan kembalikan nilainya, seperti LPOP Queue: My-Queue. Memproses Baris kosong: Jika barisan kosong, LPOP mengembalikan nihil, dan anda boleh menyemak sama ada barisan wujud sebelum membaca elemen.
