


Penjelasan terperinci algoritma K-means++ dalam Python
Algoritma K-means ialah algoritma pembelajaran tanpa pengawasan yang biasa digunakan untuk mengumpulkan data ke dalam kategori yang berbeza. Algoritma K-means++ ialah versi algoritma K-means yang dipertingkatkan, bertujuan untuk meningkatkan kecekapan dan ketepatan pemilihan pusat kluster awal. Artikel ini akan memperkenalkan secara terperinci prinsip, pelaksanaan kod dan aplikasi algoritma K-means++ dalam Python.
- Ikhtisar algoritma K-means
Algoritma K-means ialah algoritma berulang Proses setiap lelaran ialah: mula-mula pilih K pusat pengelompokan awal secara rawak, Kemudian setiap satu titik data diperuntukkan kepada kategori pusat kluster awal yang paling hampir dengannya, dan kemudian pusat semua kluster dikira semula dan pusat kluster dikemas kini. Ulangi proses di atas sehingga syarat penumpuan dipenuhi.
K-bermaksud proses algoritma:
- Pilih K titik data secara rawak daripada data sebagai pusat pengelompokan awal.
- Tetapkan titik data kepada kluster yang mengandungi pusat kluster terdekatnya.
- Kira semula pusat setiap kelompok.
- Ulang 2-3 sehingga syarat penumpuan dipenuhi (pusat kluster tidak lagi berubah, bilangan lelaran maksimum dicapai, dsb.).
- Langkah algoritma K-means++
Algoritma K-means++ ialah versi algoritma K-means yang dipertingkatkan, yang terutamanya mengoptimumkan pemilihan pusat pengelompokan awal. Langkah pemilihan pusat kluster awal bagi algoritma K-means++ adalah seperti berikut:
- Pilih titik data secara rawak sebagai pusat kluster pertama.
- Bagi setiap titik data, hitung jaraknya D(x) dari pusat kelompok terdekat.
- Pilih titik data secara rawak sebagai pusat kluster seterusnya Pastikan semakin besar jarak antara titik ini dan pusat kluster sedia ada, semakin besar kebarangkalian untuk dipilih:
a jarak terdekat D(x)^2 antara titik dan pusat kelompok sedia ada.
b. Kira jumlah Sum(D(x)^2) semua D(x)^2.
c. Timbang setiap titik data mengikut perkadaran jarak terdekatnya dengan pusat kluster sedia ada, dan kebarangkalian ialah D(x)^2/Jumlah(D(x)^2).
d. Daripada pensampelan mengikut kebarangkalian di atas, pilih titik data sebagai pusat kluster seterusnya. - Ulang langkah 3 sehingga pusat kluster K dipilih.
- Python melaksanakan algoritma K-means++
Seterusnya, kami akan melaksanakan algoritma K-means++ melalui Python.
Mula-mula, import perpustakaan yang diperlukan:
import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import make_blobs from sklearn.cluster import KMeans
Seterusnya, kami menjana satu set data untuk pengelompokan:
n_samples = 1500 random_state = 170 X, y = make_blobs(n_samples=n_samples, random_state=random_state)
Kemudian, kami melatih melalui model K-means++ modul KMeans sklearn :
kmeans = KMeans(init="k-means++", n_clusters=3, n_init=10) kmeans.fit(X)
Akhir sekali, kami memvisualisasikan hasil pengelompokan:
plt.figure(figsize=(12, 12)) h = 0.02 x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) Z = kmeans.predict(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) plt.imshow(Z, interpolation="nearest", extent=(xx.min(), xx.max(), yy.min(), yy.max()), cmap=plt.cm.Pastel1, aspect="auto", origin="lower") plt.scatter(X[:, 0], X[:, 1], s=30, c=kmeans.labels_, cmap=plt.cm.Paired) plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1], marker="^", s=100, linewidths=3, color='black', zorder=10) plt.title("K-means++ clustering") plt.xlim(x_min, x_max) plt.ylim(y_min, y_max) plt.show()
- Senario aplikasi algoritma K-means++
Algoritma K-means Sesuai untuk masalah pengelompokan data tanpa maklumat label. Berbanding dengan algoritma K-means, algoritma K-means++ lebih sesuai untuk situasi di mana terdapat banyak data atau pengagihan data secara relatifnya berselerak bagi memastikan rasional dan keunikan pusat pengelompokan awal.
Algoritma K-means++ boleh digunakan dalam perlombongan data, pemprosesan imej, pemprosesan bahasa semula jadi dan bidang lain. Algoritma pengelompokan boleh digunakan untuk mencari sampel dengan persamaan yang lebih tinggi, yang juga sangat berguna untuk visualisasi data besar.
Ringkasnya, algoritma K-means++ mempunyai prospek aplikasi yang baik dalam perlombongan data, analisis kelompok, pengecaman imej, pemprosesan bahasa semula jadi dan bidang lain.
Atas ialah kandungan terperinci Penjelasan terperinci algoritma K-means++ dalam Python. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas



MySQL mempunyai versi komuniti percuma dan versi perusahaan berbayar. Versi komuniti boleh digunakan dan diubahsuai secara percuma, tetapi sokongannya terhad dan sesuai untuk aplikasi dengan keperluan kestabilan yang rendah dan keupayaan teknikal yang kuat. Edisi Enterprise menyediakan sokongan komersil yang komprehensif untuk aplikasi yang memerlukan pangkalan data yang stabil, boleh dipercayai, berprestasi tinggi dan bersedia membayar sokongan. Faktor yang dipertimbangkan apabila memilih versi termasuk kritikal aplikasi, belanjawan, dan kemahiran teknikal. Tidak ada pilihan yang sempurna, hanya pilihan yang paling sesuai, dan anda perlu memilih dengan teliti mengikut keadaan tertentu.

Artikel ini memperkenalkan operasi pangkalan data MySQL. Pertama, anda perlu memasang klien MySQL, seperti MySqlworkbench atau Command Line Client. 1. Gunakan perintah MySQL-Uroot-P untuk menyambung ke pelayan dan log masuk dengan kata laluan akaun root; 2. Gunakan CreateTatabase untuk membuat pangkalan data, dan gunakan Pilih pangkalan data; 3. Gunakan createtable untuk membuat jadual, menentukan medan dan jenis data; 4. Gunakan InsertInto untuk memasukkan data, data pertanyaan, kemas kini data dengan kemas kini, dan padam data dengan padam. Hanya dengan menguasai langkah -langkah ini, belajar menangani masalah biasa dan mengoptimumkan prestasi pangkalan data anda boleh menggunakan MySQL dengan cekap.

Fail muat turun mysql adalah korup, apa yang perlu saya lakukan? Malangnya, jika anda memuat turun MySQL, anda boleh menghadapi rasuah fail. Ia benar -benar tidak mudah hari ini! Artikel ini akan bercakap tentang cara menyelesaikan masalah ini supaya semua orang dapat mengelakkan lencongan. Selepas membacanya, anda bukan sahaja boleh membaiki pakej pemasangan MySQL yang rosak, tetapi juga mempunyai pemahaman yang lebih mendalam tentang proses muat turun dan pemasangan untuk mengelakkan terjebak pada masa akan datang. Mari kita bercakap tentang mengapa memuat turun fail rosak. Terdapat banyak sebab untuk ini. Masalah rangkaian adalah pelakunya. Gangguan dalam proses muat turun dan ketidakstabilan dalam rangkaian boleh menyebabkan rasuah fail. Terdapat juga masalah dengan sumber muat turun itu sendiri. Fail pelayan itu sendiri rosak, dan sudah tentu ia juga dipecahkan jika anda memuat turunnya. Di samping itu, pengimbasan "ghairah" yang berlebihan beberapa perisian antivirus juga boleh menyebabkan rasuah fail. Masalah Diagnostik: Tentukan sama ada fail itu benar -benar korup

Sebab utama kegagalan pemasangan MySQL adalah: 1. Isu kebenaran, anda perlu menjalankan sebagai pentadbir atau menggunakan perintah sudo; 2. Ketergantungan hilang, dan anda perlu memasang pakej pembangunan yang relevan; 3. Konflik pelabuhan, anda perlu menutup program yang menduduki port 3306 atau mengubah suai fail konfigurasi; 4. Pakej pemasangan adalah korup, anda perlu memuat turun dan mengesahkan integriti; 5. Pembolehubah persekitaran dikonfigurasikan dengan salah, dan pembolehubah persekitaran mesti dikonfigurasi dengan betul mengikut sistem operasi. Selesaikan masalah ini dan periksa dengan teliti setiap langkah untuk berjaya memasang MySQL.

Panduan Pengoptimuman Prestasi Pangkalan Data MySQL Dalam aplikasi yang berintensifkan sumber, pangkalan data MySQL memainkan peranan penting dan bertanggungjawab untuk menguruskan urus niaga besar-besaran. Walau bagaimanapun, apabila skala aplikasi berkembang, kemunculan prestasi pangkalan data sering menjadi kekangan. Artikel ini akan meneroka satu siri strategi pengoptimuman prestasi MySQL yang berkesan untuk memastikan aplikasi anda tetap cekap dan responsif di bawah beban tinggi. Kami akan menggabungkan kes-kes sebenar untuk menerangkan teknologi utama yang mendalam seperti pengindeksan, pengoptimuman pertanyaan, reka bentuk pangkalan data dan caching. 1. Reka bentuk seni bina pangkalan data dan seni bina pangkalan data yang dioptimumkan adalah asas pengoptimuman prestasi MySQL. Berikut adalah beberapa prinsip teras: Memilih jenis data yang betul dan memilih jenis data terkecil yang memenuhi keperluan bukan sahaja dapat menjimatkan ruang penyimpanan, tetapi juga meningkatkan kelajuan pemprosesan data.

Pengoptimuman prestasi MySQL perlu bermula dari tiga aspek: konfigurasi pemasangan, pengindeksan dan pengoptimuman pertanyaan, pemantauan dan penalaan. 1. Selepas pemasangan, anda perlu menyesuaikan fail my.cnf mengikut konfigurasi pelayan, seperti parameter innodb_buffer_pool_size, dan tutup query_cache_size; 2. Buat indeks yang sesuai untuk mengelakkan indeks yang berlebihan, dan mengoptimumkan pernyataan pertanyaan, seperti menggunakan perintah menjelaskan untuk menganalisis pelan pelaksanaan; 3. Gunakan alat pemantauan MySQL sendiri (ShowProcessList, ShowStatus) untuk memantau kesihatan pangkalan data, dan kerap membuat semula dan mengatur pangkalan data. Hanya dengan terus mengoptimumkan langkah -langkah ini, prestasi pangkalan data MySQL diperbaiki.

MySQL boleh berjalan tanpa sambungan rangkaian untuk penyimpanan dan pengurusan data asas. Walau bagaimanapun, sambungan rangkaian diperlukan untuk interaksi dengan sistem lain, akses jauh, atau menggunakan ciri -ciri canggih seperti replikasi dan clustering. Di samping itu, langkah -langkah keselamatan (seperti firewall), pengoptimuman prestasi (pilih sambungan rangkaian yang betul), dan sandaran data adalah penting untuk menyambung ke Internet.

MySQL enggan memulakan? Jangan panik, mari kita periksa! Ramai kawan mendapati bahawa perkhidmatan itu tidak dapat dimulakan selepas memasang MySQL, dan mereka sangat cemas! Jangan risau, artikel ini akan membawa anda untuk menangani dengan tenang dan mengetahui dalang di belakangnya! Selepas membacanya, anda bukan sahaja dapat menyelesaikan masalah ini, tetapi juga meningkatkan pemahaman anda tentang perkhidmatan MySQL dan idea anda untuk masalah penyelesaian masalah, dan menjadi pentadbir pangkalan data yang lebih kuat! Perkhidmatan MySQL gagal bermula, dan terdapat banyak sebab, mulai dari kesilapan konfigurasi mudah kepada masalah sistem yang kompleks. Mari kita mulakan dengan aspek yang paling biasa. Pengetahuan asas: Penerangan ringkas mengenai proses permulaan perkhidmatan MySQL Startup. Ringkasnya, sistem operasi memuatkan fail yang berkaitan dengan MySQL dan kemudian memulakan daemon MySQL. Ini melibatkan konfigurasi
