Rumah > pembangunan bahagian belakang > Tutorial Python > Teknik visualisasi data teks dalam Python

Teknik visualisasi data teks dalam Python

王林
Lepaskan: 2023-06-10 22:12:13
asal
1431 orang telah melayarinya

Python ialah bahasa pengaturcaraan yang berkuasa dan kemahiran visualisasi data teksnya boleh membantu kami memahami dan menganalisis data dengan lebih baik. Artikel ini akan memperkenalkan beberapa teknik visualisasi data teks dalam Python untuk membantu anda mengubah data kepada bentuk yang mudah difahami dan dianalisis.

1. Word cloud

Word cloud ialah teknik visualisasi teks yang biasa digunakan, yang boleh membantu anda memahami perkataan penting dalam data teks dengan lebih baik. Pustaka wordcloud dalam Python boleh membantu anda membuat gambar rajah awan perkataan, dan perpustakaan jieba boleh menyediakan fungsi pembahagian perkataan. Kod di bawah menunjukkan cara menggunakan kedua-dua perpustakaan ini untuk menjana plot awan perkataan asas.

import jieba
from wordcloud import WordCloud
import matplotlib.pyplot as plt

text = "Python是一门优秀的编程语言,它具有强大的功能和广泛的应用场景。同时,Python还拥有丰富的第三方库和工具,方便程序员进行开发和调试。"

# 使用jieba进行分词
words = jieba.cut(text)
words_list = ' '.join(words)

# 创建词云对象
wc = WordCloud(width=800, height=600, background_color='white', font_path='simhei.ttf')

# 生成词云图
wc.generate(words_list)

# 展示词云图
plt.imshow(wc, interpolation='bilinear')
plt.axis('off')
plt.show()
Salin selepas log masuk

Dalam kod di atas, kami mula-mula menggunakan perpustakaan jieba untuk membahagikan data teks, kemudian menggunakan perpustakaan wordcloud untuk mencipta objek awan perkataan, dan menggunakan kaedah generate() untuk menghantar hasil segmentasi perkataan kepada perkataan objek awan untuk diproses. Akhir sekali, gunakan perpustakaan matplotlib untuk memaparkan graf awan perkataan yang dijana.

2. Histogram

Histogram ialah teknik visualisasi data yang biasa digunakan, yang boleh membantu kami membandingkan dengan lebih baik perbezaan antara data yang berbeza. Dalam Python, kita boleh menggunakan perpustakaan matplotlib untuk melukis histogram. Kod di bawah menunjukkan cara menggunakan perpustakaan matplotlib untuk mencipta histogram asas.

import matplotlib.pyplot as plt

# 数据
languages = ['Python', 'Java', 'C', 'C++', 'JavaScript']
popularity = [22.8, 17.6, 8.8, 7.6, 6.1]

# 创建柱状图
plt.bar(languages, popularity)

# 设置图形标题和坐标轴标签
plt.title('Programming Languages and Popularity')
plt.xlabel('Programming Languages')
plt.ylabel('Popularity')

# 显示柱状图
plt.show()
Salin selepas log masuk

Dalam kod di atas, kami mula-mula mentakrifkan dua senarai yang mengandungi nama-nama bahasa pengaturcaraan dan populariti masing-masing, dan kemudian menggunakan kaedah plt.bar() untuk mencipta histogram yang mewakili populariti setiap bahasa . Akhir sekali, gunakan kaedah plt.title(), plt.xlabel(), dan plt.ylabel() untuk menetapkan tajuk graf dan label paksi, dan gunakan kaedah plt.show() untuk memaparkan histogram yang dijana.

3. Plot serakan

Plot serakan ialah teknik visualisasi data yang biasa digunakan, yang boleh membantu kami memahami dengan lebih baik hubungan antara data. Dalam Python, kita boleh menggunakan perpustakaan matplotlib untuk melukis plot serakan. Kod di bawah menunjukkan cara menggunakan perpustakaan matplotlib untuk mencipta plot serakan asas.

import matplotlib.pyplot as plt

# 数据
x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
y = [6, 10, 8, 4, 7, 5, 3, 9, 2, 1]

# 创建散点图
plt.scatter(x, y)

# 设置图形标题和坐标轴标签
plt.title('Scatter Plot')
plt.xlabel('X-axis')
plt.ylabel('Y-axis')

# 显示散点图
plt.show()
Salin selepas log masuk

Dalam kod di atas, kami mula-mula mentakrifkan dua senarai untuk mewakili data, dan kemudian mencipta plot serakan menggunakan kaedah plt.scatter(). Akhir sekali, gunakan kaedah plt.title(), plt.xlabel(), dan plt.ylabel() untuk menetapkan tajuk graf dan label paksi, dan gunakan kaedah plt.show() untuk memaparkan plot serakan yang dijana.

4. Carta statistik

Carta statistik ialah teknik visualisasi data yang biasa digunakan, yang boleh membantu kami mewakili pengedaran data dengan lebih baik. Dalam Python, kita boleh menggunakan perpustakaan matplotlib untuk melukis graf statistik. Kod di bawah menunjukkan cara menggunakan perpustakaan matplotlib untuk mencipta carta statistik asas.

import matplotlib.pyplot as plt
import numpy as np

# 数据
np.random.seed(0)
x = np.random.randn(1000)

# 创建统计图
plt.hist(x, bins=20)

# 设置图形标题和坐标轴标签
plt.title('Histogram')
plt.xlabel('X-axis')
plt.ylabel('Frequency')

# 显示统计图
plt.show()
Salin selepas log masuk

Dalam kod di atas, kami menggunakan perpustakaan numpy untuk menjana senarai 1000 nombor rawak, dan kemudian menggunakan kaedah plt.hist() untuk menukar data ini kepada graf statistik. Akhir sekali, gunakan kaedah plt.title(), plt.xlabel(), dan plt.ylabel() untuk menetapkan tajuk graf dan label paksi, dan gunakan kaedah plt.show() untuk memaparkan carta statistik yang dijana.

Di atas ialah beberapa teknik visualisasi data teks asas dalam Python, yang boleh membantu kami memahami dan menganalisis data dengan lebih baik. Sama ada anda seorang pemula atau pembangun yang berpengalaman, menguasai teknik ini akan memberi kesan positif pada proses analisis data anda.

Atas ialah kandungan terperinci Teknik visualisasi data teks dalam Python. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

sumber:php.cn
Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn
Tutorial Popular
Lagi>
Muat turun terkini
Lagi>
kesan web
Kod sumber laman web
Bahan laman web
Templat hujung hadapan