Rumah pembangunan bahagian belakang Tutorial Python Pengaturcaraan Pelayan Python: Pembelajaran Mendalam dengan PyTorch

Pengaturcaraan Pelayan Python: Pembelajaran Mendalam dengan PyTorch

Jun 18, 2023 am 10:30 AM
pembelajaran yang mendalam pytorch Pengaturcaraan pelayan

Dengan perkembangan pesat teknologi kecerdasan buatan, teknologi pembelajaran mendalam telah menjadi alat penting dalam banyak bidang aplikasi. Sebagai rangka kerja pembelajaran mendalam yang popular, PyTorch telah menjadi pilihan pertama ramai penyelidik dan jurutera. Artikel ini akan memperkenalkan cara menggunakan PyTorch untuk pembelajaran mendalam dalam pengaturcaraan pelayan Python.

  1. Pengenalan kepada PyTorch

PyTorch ialah rangka kerja pembelajaran mendalam Python sumber terbuka yang menyediakan konsep dan alatan reka bentuk yang fleksibel untuk membantu penyelidik dan jurutera membina dan melatih Pelbagai rangkaian neural dalam dengan pantas . Idea teras PyTorch ialah "pelaksanaan segera", yang membolehkan pengguna menyemak dan mengubah suai model rangkaian dalam masa nyata untuk mencapai hasil latihan yang lebih baik.

Kelebihan utama menggunakan PyTorch termasuk:

  • Mudah digunakan: PyTorch menyediakan API dan dokumentasi intuitif, memudahkan pemula untuk mula menggunakannya.
  • Fleksibiliti: PyTorch menyediakan pelbagai konsep dan alatan reka bentuk yang fleksibel, membolehkan pengguna mereka bentuk dan mencuba secara bebas dengan struktur rangkaian yang berbeza.
  • Mudah untuk disesuaikan: PyTorch membolehkan pengguna menggunakan kuasa Python untuk menyesuaikan lapisan rangkaian dan proses latihan untuk mencapai fungsi pembelajaran mendalam yang lebih maju.
  1. Asas Pengaturcaraan Pelayan

Menggunakan PyTorch untuk pembelajaran mendalam dalam pengaturcaraan pelayan memerlukan pengetahuan pengaturcaraan pelayan asas. Asas pengaturcaraan pelayan tidak akan diperkenalkan secara terperinci di sini, tetapi kita perlu memberi perhatian kepada aspek berikut:

  • Storan data: Pelayan biasanya perlu membaca dan menulis sejumlah besar data, jadi mereka perlu menggunakan kaedah penyimpanan Data yang cekap, seperti pangkalan data, sistem fail, dsb.
  • Komunikasi rangkaian: Pelayan biasanya perlu mengendalikan pelbagai permintaan rangkaian, seperti permintaan HTTP, permintaan WebSocket, dsb.
  • Berbilang benang dan berbilang proses: Untuk meningkatkan prestasi dan kestabilan pelayan, biasanya perlu menggunakan berbilang benang atau berbilang proses untuk mengendalikan permintaan.
  • Keselamatan: Pelayan perlu melindungi keselamatan data dan sistem, termasuk tembok api, penyulitan, pengesahan, kebenaran, dsb.
  1. Aplikasi PyTorch dalam pengaturcaraan pelayan

Aplikasi PyTorch dalam pengaturcaraan pelayan biasanya merangkumi aspek berikut:

  • Model latihan: Pelayan boleh menggunakan PyTorch untuk latihan model dalam persekitaran berbilang GPU, dengan itu mempercepatkan kelajuan latihan dan meningkatkan prestasi model.
  • Inferens model: Pelayan boleh menggunakan PyTorch untuk inferens model, memberikan respons masa nyata kepada permintaan pelanggan.
  • Pengurusan model: Pelayan boleh menggunakan PyTorch untuk mengurus berbilang model, membenarkan pengguna menukar dan menggunakan model yang berbeza dengan pantas.
  • Sokongan berbilang bahasa: PyTorch boleh disepadukan dengan bahasa pengaturcaraan lain, seperti Java, C++, dll., untuk disepadukan dengan senario aplikasi yang berbeza.
  1. Contoh: Latih dan gunakan model menggunakan PyTorch

Berikut ialah contoh mudah yang menunjukkan cara melatih dan menggunakan model menggunakan PyTorch.

Pertama, kami perlu memuat turun dan menyediakan set data latihan Di sini kami menggunakan set data pengecaman digit tulisan tangan MNIST. Kemudian, kita perlu menentukan rangkaian saraf konvolusi untuk latihan dan inferens.

import torch.nn as nn

class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 20, 5, 1)
        self.conv2 = nn.Conv2d(20, 50, 5, 1)
        self.fc1 = nn.Linear(4*4*50, 500)
        self.fc2 = nn.Linear(500, 10)

    def forward(self, x):
        x = F.relu(self.conv1(x))
        x = F.max_pool2d(x, 2, 2)
        x = F.relu(self.conv2(x))
        x = F.max_pool2d(x, 2, 2)
        x = x.view(-1, 4*4*50)
        x = F.relu(self.fc1(x))
        x = self.fc2(x)
        return F.log_softmax(x, dim=1)
Salin selepas log masuk

Seterusnya, kita perlu mentakrifkan fungsi latihan untuk melatih rangkaian saraf konvolusi yang ditakrifkan di atas. Di sini kami menggunakan fungsi kehilangan entropi silang dan algoritma pengoptimuman keturunan kecerunan stokastik.

def train(model, device, train_loader, optimizer, epoch):
    model.train()
    for batch_idx, (data, target) in enumerate(train_loader):
        data, target = data.to(device), target.to(device)
        optimizer.zero_grad()
        output = model(data)
        loss = F.nll_loss(output, target)
        loss.backward()
        optimizer.step()
Salin selepas log masuk

Akhir sekali, kita perlu mentakrifkan fungsi inferens untuk inferens model pada masa penggunaan.

def infer(model, device, data):
    model.eval()
    with torch.no_grad():
        output = model(data.to(device))
        pred = output.argmax(dim=1, keepdim=True)
        return pred.item()
Salin selepas log masuk

Melalui langkah di atas, kami boleh melatih dan menggunakan model rangkaian saraf konvolusi yang mudah.

  1. Ringkasan

Melalui pengenalan artikel ini, kami telah mempelajari cara menggunakan PyTorch untuk pembelajaran mendalam dalam pengaturcaraan pelayan Python. Sebagai rangka kerja pembelajaran mendalam yang fleksibel, PyTorch boleh membina dan melatih pelbagai rangkaian saraf dalam dengan cepat, sambil mempunyai kelebihan kemudahan penggunaan dan penyesuaian. Kami boleh menggunakan PyTorch untuk latihan model, inferens model dan pengurusan model untuk meningkatkan prestasi pelayan dan keupayaan aplikasi.

Atas ialah kandungan terperinci Pengaturcaraan Pelayan Python: Pembelajaran Mendalam dengan PyTorch. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

AI Hentai Generator

AI Hentai Generator

Menjana ai hentai secara percuma.

Alat panas

Notepad++7.3.1

Notepad++7.3.1

Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina

SublimeText3 versi Cina

Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1

Hantar Studio 13.0.1

Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6

Dreamweaver CS6

Alat pembangunan web visual

SublimeText3 versi Mac

SublimeText3 versi Mac

Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Kaedah dan langkah untuk menggunakan BERT untuk analisis sentimen dalam Python Kaedah dan langkah untuk menggunakan BERT untuk analisis sentimen dalam Python Jan 22, 2024 pm 04:24 PM

BERT ialah model bahasa pembelajaran mendalam pra-latihan yang dicadangkan oleh Google pada 2018. Nama penuh ialah BidirectionalEncoderRepresentationsfromTransformers, yang berdasarkan seni bina Transformer dan mempunyai ciri pengekodan dwiarah. Berbanding dengan model pengekodan sehala tradisional, BERT boleh mempertimbangkan maklumat kontekstual pada masa yang sama semasa memproses teks, jadi ia berfungsi dengan baik dalam tugas pemprosesan bahasa semula jadi. Dwiarahnya membolehkan BERT memahami dengan lebih baik hubungan semantik dalam ayat, dengan itu meningkatkan keupayaan ekspresif model. Melalui kaedah pra-latihan dan penalaan halus, BERT boleh digunakan untuk pelbagai tugas pemprosesan bahasa semula jadi, seperti analisis sentimen, penamaan.

Gabungan sempurna PyCharm dan PyTorch: langkah pemasangan dan konfigurasi terperinci Gabungan sempurna PyCharm dan PyTorch: langkah pemasangan dan konfigurasi terperinci Feb 21, 2024 pm 12:00 PM

PyCharm ialah persekitaran pembangunan bersepadu (IDE) yang berkuasa dan PyTorch ialah rangka kerja sumber terbuka yang popular dalam bidang pembelajaran mendalam. Dalam bidang pembelajaran mesin dan pembelajaran mendalam, menggunakan PyCharm dan PyTorch untuk pembangunan boleh meningkatkan kecekapan pembangunan dan kualiti kod. Artikel ini akan memperkenalkan secara terperinci cara memasang dan mengkonfigurasi PyTorch dalam PyCharm, dan melampirkan contoh kod khusus untuk membantu pembaca menggunakan fungsi berkuasa kedua-dua ini dengan lebih baik. Langkah 1: Pasang PyCharm dan Python

Di luar ORB-SLAM3! SL-SLAM: Adegan bertekstur lemah ringan, kegelisahan teruk dan lemah semuanya dikendalikan Di luar ORB-SLAM3! SL-SLAM: Adegan bertekstur lemah ringan, kegelisahan teruk dan lemah semuanya dikendalikan May 30, 2024 am 09:35 AM

Ditulis sebelum ini, hari ini kita membincangkan bagaimana teknologi pembelajaran mendalam boleh meningkatkan prestasi SLAM berasaskan penglihatan (penyetempatan dan pemetaan serentak) dalam persekitaran yang kompleks. Dengan menggabungkan kaedah pengekstrakan ciri dalam dan pemadanan kedalaman, di sini kami memperkenalkan sistem SLAM visual hibrid serba boleh yang direka untuk meningkatkan penyesuaian dalam senario yang mencabar seperti keadaan cahaya malap, pencahayaan dinamik, kawasan bertekstur lemah dan seks yang teruk. Sistem kami menyokong berbilang mod, termasuk konfigurasi monokular, stereo, monokular-inersia dan stereo-inersia lanjutan. Selain itu, ia juga menganalisis cara menggabungkan SLAM visual dengan kaedah pembelajaran mendalam untuk memberi inspirasi kepada penyelidikan lain. Melalui percubaan yang meluas pada set data awam dan data sampel sendiri, kami menunjukkan keunggulan SL-SLAM dari segi ketepatan kedudukan dan keteguhan penjejakan.

Pembenaman ruang terpendam: penjelasan dan demonstrasi Pembenaman ruang terpendam: penjelasan dan demonstrasi Jan 22, 2024 pm 05:30 PM

Pembenaman Ruang Terpendam (LatentSpaceEmbedding) ialah proses memetakan data berdimensi tinggi kepada ruang berdimensi rendah. Dalam bidang pembelajaran mesin dan pembelajaran mendalam, pembenaman ruang terpendam biasanya merupakan model rangkaian saraf yang memetakan data input berdimensi tinggi ke dalam set perwakilan vektor berdimensi rendah ini sering dipanggil "vektor terpendam" atau "terpendam pengekodan". Tujuan pembenaman ruang terpendam adalah untuk menangkap ciri penting dalam data dan mewakilinya ke dalam bentuk yang lebih ringkas dan mudah difahami. Melalui pembenaman ruang terpendam, kami boleh melakukan operasi seperti memvisualisasikan, mengelaskan dan mengelompokkan data dalam ruang dimensi rendah untuk memahami dan menggunakan data dengan lebih baik. Pembenaman ruang terpendam mempunyai aplikasi yang luas dalam banyak bidang, seperti penjanaan imej, pengekstrakan ciri, pengurangan dimensi, dsb. Pembenaman ruang terpendam adalah yang utama

Pengenalan kepada lima kaedah pensampelan dalam tugas penjanaan bahasa semula jadi dan pelaksanaan kod Pytorch Pengenalan kepada lima kaedah pensampelan dalam tugas penjanaan bahasa semula jadi dan pelaksanaan kod Pytorch Feb 20, 2024 am 08:50 AM

Dalam tugas penjanaan bahasa semula jadi, kaedah pensampelan ialah teknik untuk mendapatkan output teks daripada model generatif. Artikel ini akan membincangkan 5 kaedah biasa dan melaksanakannya menggunakan PyTorch. 1. GreedyDecoding Dalam penyahkodan tamak, model generatif meramalkan perkataan urutan keluaran berdasarkan urutan input masa langkah demi masa. Pada setiap langkah masa, model mengira taburan kebarangkalian bersyarat bagi setiap perkataan, dan kemudian memilih perkataan dengan kebarangkalian bersyarat tertinggi sebagai output langkah masa semasa. Perkataan ini menjadi input kepada langkah masa seterusnya, dan proses penjanaan diteruskan sehingga beberapa syarat penamatan dipenuhi, seperti urutan panjang tertentu atau penanda akhir khas. Ciri GreedyDecoding ialah setiap kali kebarangkalian bersyarat semasa adalah yang terbaik

Melaksanakan model resapan penyingkiran hingar menggunakan PyTorch Melaksanakan model resapan penyingkiran hingar menggunakan PyTorch Jan 14, 2024 pm 10:33 PM

Sebelum kita memahami prinsip kerja Model Kebarangkalian Penyebaran Denoising (DDPM) secara terperinci, mari kita fahami dahulu beberapa perkembangan kecerdasan buatan generatif, yang juga merupakan salah satu penyelidikan asas DDPM. VAEVAE menggunakan pengekod, ruang terpendam kemungkinan dan penyahkod. Semasa latihan, pengekod meramalkan min dan varians setiap imej dan sampel nilai ini daripada taburan Gaussian. Hasil pensampelan dihantar ke penyahkod, yang menukar imej input ke dalam bentuk yang serupa dengan imej output. KL divergence digunakan untuk mengira kerugian. Kelebihan ketara VAE ialah keupayaannya untuk menghasilkan imej yang pelbagai. Dalam peringkat persampelan, seseorang boleh membuat sampel terus daripada taburan Gaussian dan menjana imej baharu melalui penyahkod. GAN telah mencapai kemajuan besar dalam pengekod auto variasi (VAE) dalam masa satu tahun sahaja.

Tutorial memasang PyCharm dengan PyTorch Tutorial memasang PyCharm dengan PyTorch Feb 24, 2024 am 10:09 AM

Sebagai rangka kerja pembelajaran mendalam yang berkuasa, PyTorch digunakan secara meluas dalam pelbagai projek pembelajaran mesin. Sebagai persekitaran pembangunan bersepadu Python yang berkuasa, PyCharm juga boleh memberikan sokongan yang baik apabila melaksanakan tugas pembelajaran mendalam. Artikel ini akan memperkenalkan secara terperinci cara memasang PyTorch dalam PyCharm dan menyediakan contoh kod khusus untuk membantu pembaca mula menggunakan PyTorch dengan cepat untuk tugasan pembelajaran mendalam. Langkah 1: Pasang PyCharm Mula-mula, kita perlu pastikan kita ada

Fahami dalam satu artikel: kaitan dan perbezaan antara AI, pembelajaran mesin dan pembelajaran mendalam Fahami dalam satu artikel: kaitan dan perbezaan antara AI, pembelajaran mesin dan pembelajaran mendalam Mar 02, 2024 am 11:19 AM

Dalam gelombang perubahan teknologi yang pesat hari ini, Kecerdasan Buatan (AI), Pembelajaran Mesin (ML) dan Pembelajaran Dalam (DL) adalah seperti bintang terang, menerajui gelombang baharu teknologi maklumat. Ketiga-tiga perkataan ini sering muncul dalam pelbagai perbincangan dan aplikasi praktikal yang canggih, tetapi bagi kebanyakan peneroka yang baru dalam bidang ini, makna khusus dan hubungan dalaman mereka mungkin masih diselubungi misteri. Jadi mari kita lihat gambar ini dahulu. Dapat dilihat bahawa terdapat korelasi rapat dan hubungan progresif antara pembelajaran mendalam, pembelajaran mesin dan kecerdasan buatan. Pembelajaran mendalam ialah bidang khusus pembelajaran mesin dan pembelajaran mesin

See all articles