Rumah Java javaTutorial Pengenalan kepada pengekod auto dan pengekod auto variasi dalam pembelajaran mendalam menggunakan Java

Pengenalan kepada pengekod auto dan pengekod auto variasi dalam pembelajaran mendalam menggunakan Java

Jun 18, 2023 am 11:21 AM
java pembelajaran yang mendalam pengekod auto

Pembelajaran mendalam telah menjadi bahagian penting dalam bidang kecerdasan buatan. Dalam pembelajaran mendalam, pengekod auto dan pengekod auto variasi telah menjadi teknologi yang sangat penting. Artikel ini akan memperkenalkan cara menggunakan Java untuk melaksanakan pengekod auto dan pengekod auto variasi dalam pembelajaran mendalam.

Pengekod auto ialah rangkaian saraf yang matlamat utamanya adalah untuk mengekod data input ke dalam ciri terpendam, dalam proses mengurangkan dimensi data asal. Pengekod automatik terdiri daripada pengekod dan penyahkod. Pengekod memproses data input kepada ciri terpendam, dan penyahkod menukar ciri terpendam kepada data mentah. Autoenkoder biasanya digunakan untuk tugas seperti pengekstrakan ciri, pengurangan dimensi dan denoising.

Di Java, pengekod auto boleh dilaksanakan dengan mudah menggunakan perpustakaan deeplearning4j. Berikut ialah program Java ringkas yang melaksanakan pengekod automatik:

MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder().seed(123)
            .weightInit(WeightInit.XAVIER)
            .updater(new Nesterovs(0.1, 0.9))
            .list()
            .layer(0, new DenseLayer.Builder().nIn(784).nOut(250)
                    .activation(Activation.RELU)
                    .build())
            .layer(1, new OutputLayer.Builder().nIn(250).nOut(784)
                    .activation(Activation.SIGMOID)
                    .lossFunction(LossFunction.MSE)
                    .build())
            .build();

MultiLayerNetwork model = new MultiLayerNetwork(conf);
model.init();
Salin selepas log masuk

Atur cara di atas mencipta model dengan dua lapisan. Lapisan pertama ialah lapisan DenseLayer dengan saiz input 784 dan saiz output 250. Fungsi pengaktifan menggunakan fungsi ReLU. Lapisan kedua ialah lapisan keluaran, dengan saiz input 250 dan saiz keluaran 784. Fungsi pengaktifan ialah fungsi sigmoid, dan fungsi kehilangan ialah MSE. Pada masa yang sama, model ini dimulakan menggunakan kaedah kemas kini Nesterovs.

Selepas melaksanakan pengekod automatik, mari perkenalkan pengekod auto variasi.

Pengekod auto variasi adalah berdasarkan pengekod auto dan menggunakan kaedah statistik untuk mengawal ciri terpendam. Dalam pengekod auto, ciri terpendam dijana oleh pengekod, manakala dalam pengekod auto variasi, pengedaran ciri terpendam dijana oleh pembolehubah terpendam dalam pengekod. Semasa latihan, matlamat pengekod auto variasi adalah untuk meminimumkan ralat pembinaan semula dan perbezaan KL.

Di Java, pengekod auto variasi juga boleh dilaksanakan dengan mudah menggunakan perpustakaan deeplearning4j. Berikut ialah program Java ringkas yang melaksanakan pengekod auto variasi:

MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder()
            .seed(123)
            .updater(new Adam(0.01))
            .weightInit(WeightInit.XAVIER)
            .list()
            .layer(new VariationalAutoencoder.Builder()
                    .nIn(784)
                    .nOut(32)
                    .encoderLayerSizes(256, 256)
                    .decoderLayerSizes(256, 256)
                    .pzxActivationFunction(new ActivationIdentity())
                    .reconstructionDistribution(new GaussianReconstructionDistribution(Activation.SIGMOID.getActivationFunction()))
                    .build())
            .pretrain(false).backprop(true)
            .build();

MultiLayerNetwork model = new MultiLayerNetwork(conf);
model.init();
Salin selepas log masuk

Atur cara di atas mencipta model yang mengandungi pengekod auto variasi. Saiz input ialah 784 dan saiz output ialah 32. Kedua-dua pengekod dan penyahkod mempunyai dua lapisan. Fungsi pengaktifan menggunakan fungsi sigmoid. Taburan yang dibina semula ialah taburan Gaussian. Pada masa yang sama, model dimulakan menggunakan kaedah kemas kini Adam.

Ringkasnya, tidak rumit untuk menggunakan Java untuk melaksanakan pengekod auto dan pengekod auto variasi dalam pembelajaran mendalam Anda hanya perlu menggunakan perpustakaan deeplearning4j. Pengekod auto dan pengekod auto variasi ialah teknologi penting dalam pembelajaran mendalam dan boleh memproses data berdimensi lebih tinggi adalah dipercayai bahawa kedua-dua teknologi ini akan memainkan peranan yang semakin penting dalam bidang kecerdasan buatan masa hadapan.

Atas ialah kandungan terperinci Pengenalan kepada pengekod auto dan pengekod auto variasi dalam pembelajaran mendalam menggunakan Java. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn

Tag artikel panas

Notepad++7.3.1

Notepad++7.3.1

Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina

SublimeText3 versi Cina

Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1

Hantar Studio 13.0.1

Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6

Dreamweaver CS6

Alat pembangunan web visual

SublimeText3 versi Mac

SublimeText3 versi Mac

Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Akar Kuasa Dua di Jawa Akar Kuasa Dua di Jawa Aug 30, 2024 pm 04:26 PM

Akar Kuasa Dua di Jawa

Nombor Sempurna di Jawa Nombor Sempurna di Jawa Aug 30, 2024 pm 04:28 PM

Nombor Sempurna di Jawa

Penjana Nombor Rawak di Jawa Penjana Nombor Rawak di Jawa Aug 30, 2024 pm 04:27 PM

Penjana Nombor Rawak di Jawa

Nombor Armstrong di Jawa Nombor Armstrong di Jawa Aug 30, 2024 pm 04:26 PM

Nombor Armstrong di Jawa

Weka di Jawa Weka di Jawa Aug 30, 2024 pm 04:28 PM

Weka di Jawa

Soalan Temuduga Java Spring Soalan Temuduga Java Spring Aug 30, 2024 pm 04:29 PM

Soalan Temuduga Java Spring

Cuti atau kembali dari Java 8 Stream Foreach? Cuti atau kembali dari Java 8 Stream Foreach? Feb 07, 2025 pm 12:09 PM

Cuti atau kembali dari Java 8 Stream Foreach?

Nombor Smith di Jawa Nombor Smith di Jawa Aug 30, 2024 pm 04:28 PM

Nombor Smith di Jawa

See all articles