


Mekanisme caching untuk melaksanakan algoritma pengesyoran e-dagang yang cekap di Golang.
Dengan perkembangan pesat perniagaan e-dagang, algoritma pengesyoran telah menjadi salah satu kunci kepada persaingan antara platform e-dagang utama. Sebagai bahasa yang cekap dan berprestasi tinggi, Golang mempunyai kelebihan besar dalam melaksanakan algoritma pengesyoran e-dagang. Walau bagaimanapun, semasa melaksanakan algoritma pengesyoran yang cekap, mekanisme caching juga merupakan isu yang tidak boleh diabaikan. Artikel ini akan memperkenalkan cara melaksanakan mekanisme caching algoritma pengesyoran e-dagang yang cekap di Golang.
1. Mengapa mekanisme caching diperlukan
Dalam algoritma pengesyoran e-dagang, penjanaan hasil pengesyoran memerlukan sejumlah besar sumber pengkomputeran Untuk platform e-dagang yang berkonkurensi tinggi. setiap cadangan Pengiraan semula jelas tidak realistik. Untuk menyelesaikan masalah ini, mekanisme caching boleh digunakan untuk cache hasil pengesyoran yang dikira ke dalam ingatan untuk permintaan seterusnya untuk mengelakkan pengiraan berulang.
Selain itu, medan e-dagang perlu menghadapi sejumlah besar data masa nyata Bukan sahaja data tingkah laku pengguna perlu dikemas kini dalam masa nyata, tetapi juga status produk, harga, inventori dan maklumat lain perlu dikemas kini dalam masa nyata. Oleh itu, mekanisme caching boleh menyelesaikan masalah kemas kini data dengan berkesan dan mengelakkan ketidakkonsistenan antara data cache dan data sebenar akibat perubahan data, dengan itu memastikan ketepatan keputusan pengesyoran.
2. Cara melaksanakan mekanisme caching
- Pilih alatan caching
Golang menyediakan pelbagai alatan caching, termasuk peta terbina dalam, penyegerakan .Peta dan perpustakaan pihak ketiga seperti gcache, go-cache, dsb. Antaranya, sync.Map ialah Peta selamat serentak yang baru ditambah dalam versi Golang 1.9 Ia boleh memastikan keselamatan membaca dan menulis dalam persekitaran konkurensi tinggi, dan prestasinya juga sangat baik satu contoh.
- Pilih butiran cache mengikut keperluan perniagaan
Apabila melaksanakan mekanisme caching, adalah perlu untuk memilih butiran cache mengikut ciri perniagaan e-dagang untuk mencapai kesan caching yang optimum. Biasanya, butiran cache algoritma pengesyoran e-dagang boleh diperhalusi kepada tahap berikut:
a Cache peringkat pengguna
menyimpan cache gelagat sejarah pengguna, seperti menyemak imbas rekod dan pembelian Rekod. , rekod kutipan, dsb. Semasa setiap pengesyoran, pengesyoran dibuat berdasarkan data tingkah laku pengguna untuk mengelakkan pengiraan dua kali. Memandangkan data tingkah laku setiap pengguna adalah berbeza, kaedah ini boleh memberikan pengesyoran yang lebih tepat.
b. Caching peringkat produk
Cache maklumat asas produk, seperti harga, inventori, status, penerangan, dll., dan cache atribut produk yang berkaitan, seperti jenama, model, spesifikasi, bahan tunggu. Semasa setiap pengesyoran, pengesyoran dibuat berdasarkan maklumat atribut produk untuk mengelakkan pengiraan dua kali.
c. Caching peringkat kategori
Kategori produk mengikut kategori dan cache ID produk di bawah setiap kategori. Semasa setiap pengesyoran, pengesyoran dibuat berdasarkan ID produk di bawah kategori semasa untuk mengelakkan pengiraan dua kali. Kaedah ini sesuai untuk situasi di mana terdapat banyak produk dalam kategori yang sama.
- Strategi Caching
Apabila melaksanakan mekanisme caching algoritma pengesyoran e-dagang, adalah perlu untuk merangka strategi caching yang sesuai berdasarkan keperluan perniagaan. Biasanya, strategi penyingkiran cache LRU (Paling Kurang Digunakan) boleh diguna pakai, iaitu, apabila ruang cache tidak mencukupi, data cache yang paling kurang digunakan baru-baru ini akan dihapuskan. Pada masa yang sama, anda juga boleh menetapkan masa tamat tempoh cache, dan data cache akan dihapuskan secara automatik apabila ia tidak diakses untuk tempoh masa tertentu. Ini memastikan ketepatan masa dan ketepatan data cache.
3. Contoh: Melaksanakan algoritma pengesyoran e-dagang berdasarkan mekanisme caching Golang
Dalam bahagian ini, kami akan mengambil strategi caching peringkat pengguna sebagai contoh untuk menerangkan cara melaksanakan e- cadangan perdagangan dalam mekanisme caching Algoritma.
- Takrif struktur cache
Tentukan struktur UserCache, termasuk keputusan cache, masa tamat tempoh, masa penggunaan dan maklumat lain.
taip UserCache struct {
Data []int // 缓存的推荐结果 ExpiredTime time.Time // 过期时间 LastUsedTime time.Time // 上次使用时间
}
- Mulakan cache
Gunakan penyegerakan.Peta untuk memulakan cache dan gunakan ID pengguna sebagai kunci, UserCache cache sebagai nilai.
var userCache sync.Map // Mulakan cache peringkat pengguna menggunakan sync.Map
func main() {
// 缓存用户推荐结果 userID := 10001 res := []int{2001, 2002, 2003} cacheTime := 10 * time.Minute // 缓存时间为10分钟 setUserCache(userID, res, cacheTime)
}
func setUserCache(userID int, res []int, cacheTime time.Duration) {
userCache.Store(userID, UserCache{ Data: res, ExpiredTime: time.Now().Add(cacheTime), LastUsedTime: time.Now(), })
}
- Dapatkan cache
Pada setiap pengesyoran, mula-mula cari dari cache sama ada Terdapat ialah hasil pengesyoran yang dikira Jika wujud, hasil cache akan dikembalikan secara langsung.
func recommend(userID int) []int {
// 先从缓存中查询是否存在已经计算好的推荐结果 cache, ok := userCache.Load(userID) if ok { userCache := cache.(UserCache) // 如果缓存已经过期,则将该缓存清除 if userCache.ExpiredTime.Before(time.Now()) { userCache.Delete(userID) } else { userCache.LastUsedTime = time.Now() // 更新缓存的使用时间 return userCache.Data } } // 如果缓存中不存在该用户的推荐结果,则进行实时计算 res := calRecommend(userID) cacheTime := 10*time.Minute // 缓存时间为10分钟 setUserCache(userID, res, cacheTime) // 缓存推荐结果 return res
}
4 Ringkasan
Melalui contoh di atas, kita dapat melihatnya dalam e -dagang Dalam algoritma pengesyoran, mekanisme caching sangat diperlukan. Ia boleh meningkatkan kecekapan pengesyoran sambil memastikan ketepatan tinggi dan prestasi masa nyata hasil pengesyoran. Artikel ini mengambil Golang sebagai contoh untuk memperkenalkan cara melaksanakan mekanisme caching yang cekap untuk algoritma pengesyoran e-dagang. Dalam aplikasi sebenar, strategi cache dan butiran yang paling sesuai perlu dipilih berdasarkan situasi sebenar.
Atas ialah kandungan terperinci Mekanisme caching untuk melaksanakan algoritma pengesyoran e-dagang yang cekap di Golang.. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas



Membaca dan menulis fail dengan selamat dalam Go adalah penting. Garis panduan termasuk: Menyemak kebenaran fail Menutup fail menggunakan tangguh Mengesahkan laluan fail Menggunakan tamat masa konteks Mengikuti garis panduan ini memastikan keselamatan data anda dan keteguhan aplikasi anda.

Bagaimana untuk mengkonfigurasi pengumpulan sambungan untuk sambungan pangkalan data Go? Gunakan jenis DB dalam pakej pangkalan data/sql untuk membuat sambungan pangkalan data untuk mengawal bilangan maksimum sambungan serentak;

Rangka kerja Go menyerlah kerana kelebihan prestasi tinggi dan konkurensinya, tetapi ia juga mempunyai beberapa kelemahan, seperti agak baharu, mempunyai ekosistem pembangun yang kecil dan kekurangan beberapa ciri. Selain itu, perubahan pantas dan keluk pembelajaran boleh berbeza dari rangka kerja ke rangka kerja. Rangka kerja Gin ialah pilihan popular untuk membina API RESTful kerana penghalaan yang cekap, sokongan JSON terbina dalam dan pengendalian ralat yang berkuasa.

Perbezaan antara rangka kerja GoLang dan rangka kerja Go ditunjukkan dalam seni bina dalaman dan ciri luaran. Rangka kerja GoLang adalah berdasarkan perpustakaan standard Go dan meluaskan fungsinya, manakala rangka kerja Go terdiri daripada perpustakaan bebas untuk mencapai tujuan tertentu. Rangka kerja GoLang lebih fleksibel dan rangka kerja Go lebih mudah digunakan. Rangka kerja GoLang mempunyai sedikit kelebihan dalam prestasi dan rangka kerja Go lebih berskala. Kes: gin-gonic (rangka Go) digunakan untuk membina REST API, manakala Echo (rangka kerja GoLang) digunakan untuk membina aplikasi web.

Amalan terbaik: Cipta ralat tersuai menggunakan jenis ralat yang ditakrifkan dengan baik (pakej ralat) Sediakan lebih banyak butiran Log ralat dengan sewajarnya Sebarkan ralat dengan betul dan elakkan menyembunyikan atau menyekat ralat Balut seperti yang diperlukan untuk menambah konteks

Data JSON boleh disimpan ke dalam pangkalan data MySQL dengan menggunakan perpustakaan gjson atau fungsi json.Unmarshal. Pustaka gjson menyediakan kaedah kemudahan untuk menghuraikan medan JSON dan fungsi json.Unmarshal memerlukan penuding jenis sasaran kepada data JSON unmarshal. Kedua-dua kaedah memerlukan penyediaan pernyataan SQL dan melaksanakan operasi sisipan untuk mengekalkan data ke dalam pangkalan data.

Cara menangani isu keselamatan biasa dalam rangka kerja Go Dengan penggunaan meluas rangka kerja Go dalam pembangunan web, memastikan keselamatannya adalah penting. Berikut ialah panduan praktikal untuk menyelesaikan masalah keselamatan biasa, dengan kod sampel: 1. SQL Injection Gunakan pernyataan yang disediakan atau pertanyaan berparameter untuk mengelakkan serangan suntikan SQL. Contohnya: constquery="SELECT*FROMusersWHEREusername=?"stmt,err:=db.Prepare(query)iferr!=nil{//Handleerror}err=stmt.QueryR

Fungsi FindStringSubmatch mencari subrentetan pertama dipadankan dengan ungkapan biasa: fungsi mengembalikan hirisan yang mengandungi subrentetan yang sepadan, dengan elemen pertama ialah keseluruhan rentetan dipadankan dan elemen berikutnya ialah subrentetan individu. Contoh kod: regexp.FindStringSubmatch(teks,corak) mengembalikan sekeping subrentetan yang sepadan. Kes praktikal: Ia boleh digunakan untuk memadankan nama domain dalam alamat e-mel, contohnya: e-mel:="user@example.com", pattern:=@([^\s]+)$ untuk mendapatkan padanan nama domain [1].
