


Perangkak yang diedarkan dalam Scrapy dan kaedah untuk meningkatkan kecekapan merangkak data
Scrapy ialah rangka kerja perangkak web Python yang cekap yang boleh menulis program perangkak dengan cepat dan fleksibel. Walau bagaimanapun, apabila memproses sejumlah besar data atau tapak web yang kompleks, perangkak yang berdiri sendiri mungkin menghadapi masalah prestasi dan kebolehskalaan Pada masa ini, perangkak yang diedarkan perlu digunakan untuk meningkatkan kecekapan merangkak data. Artikel ini memperkenalkan perangkak teragih dalam Scrapy dan kaedah untuk meningkatkan kecekapan merangkak data.
1. Apakah perangkak teragih?
Dalam seni bina perangkak mesin tunggal tradisional, semua perangkak berjalan pada mesin yang sama Apabila berhadapan dengan sejumlah besar data atau tugas merangkak bertekanan tinggi, prestasi mesin selalunya ketat. Perangkak teragih mengagihkan tugas perangkak kepada berbilang mesin untuk diproses Melalui pengkomputeran dan penyimpanan yang diedarkan, beban pada satu mesin dikurangkan, dengan itu meningkatkan kecekapan dan kestabilan perangkak.
Perangkak teragih dalam Scrapy biasanya dilaksanakan menggunakan rangka kerja penjadualan teragih sumber terbuka Distributed Scrapy (pendek kata DSC). DSC mengedarkan program perangkak Scrapy kepada berbilang mesin untuk pemprosesan selari, dan meringkaskan keputusan secara seragam ke nod penjadualan pusat.
2. Bagaimana untuk melaksanakan perangkak teragih?
1. Install Distributed Scrapy
Jalankan arahan berikut untuk memasang DSC:
pip install scrapy_redis
pip install pymongo
2 . Ubah suai fail konfigurasi Scrapy
Tambah konfigurasi berikut dalam fail settings.py projek Scrapy:
Gunakan penjadual redis
SCHEDULER = "scrapy_redis.scheduler.Scheduler"
Gunakan strategi deduplikasi redis
DUPEFILTER_CLASS = "scrapy_redis.dupefilter.RFPDupeFilter"
Jika anda tidak mengosongkan rekod redis, anda boleh jeda/sambung semula merangkak
SCHEDULER_PERSIST=Benar
Tetapkan parameter sambungan redis
REDIS_HOST='localhost'
REDIS_PORT=6379
3.dalam program perangkak Scrapy , anda perlu mengubah suai kaedah permintaan permulaan, gunakan kaedah permulaan scrapy-redis:
pengekodan:utf-8
import scrapy,re,json
daripada ..item import DouyuItem
dari scrapy_redis.spiders import RedisSpider
kelas DouyuSpider(RedisSpider):
# 爬虫名字 name = 'douyu' # redis-key,从redis中pop数据进行爬取 redis_key = 'douyu:start_urls' def parse(self, response): # scrapy爬虫代码
4 >Lakukan arahan berikut dalam terminal untuk memulakan perkhidmatan redis :
redis-server
5. Nod DSC:
scrapy crawl douyu -s JOBDIR= job1
Antaranya, job1 boleh menjadi nama tersuai, yang digunakan untuk DSC merekod status crawler.
3. Optimize Scrapy crawler
Scrapy menyediakan banyak kaedah untuk mengoptimumkan kecekapan crawler Jika digunakan dengan perangkak teragih, kecekapan merangkak data boleh dipertingkatkan lagi.
1. Menggunakan CrawlerRunner
CrawlerRunner memerlukan kelas Twisted untuk melanjutkan aplikasi. Berbanding dengan hanya menjalankan fail Python, ia membolehkan anda menjalankan berbilang perangkak secara serentak dalam proses yang sama tanpa menggunakan berbilang proses atau berbilang mesin. Ini boleh memudahkan pengurusan tugasan.
Cara untuk menggunakan CrawlerRunner adalah seperti berikut:
dari twisted.internet import reactor, tangguhkan
dari scrapy.crawler import CrawlerRunnerdari scrapy.utils.project import get_project_settings
dari my_spider.spiders.my_spider import MySpiderrunner = CrawlerRunner(get_project_settings())
@defer.inlineCallbacks
def crawl():
rreeee ()
Jika anda perlu memproses sejumlah besar atau data kompleks dalam perisian tengah muat turun, anda boleh menggunakan CONCURRENT_REQUESTS_PER_DOMAIN untuk mengurangkan keutamaan perisian tengah muat turun. 🎜>}
3. Pelarasan CONCURRENT_REQUESTS dan DOWNLOAD_DELAY parameter
Perangkak teragih Scrapy boleh membantu kami memproses sejumlah besar data dan meningkatkan kecekapan perangkak. Pada masa yang sama, kecekapan perangkak boleh dipertingkatkan lagi dengan menurunkan keutamaan perisian tengah muat turun, melaraskan bilangan coroutine dan meningkatkan kelewatan permintaan. Perangkak teragih ialah salah satu fungsi penting Pembelajaran Scrapy yang membolehkan kita mengendalikan pelbagai tugasan perangkak dengan mudah.
Atas ialah kandungan terperinci Perangkak yang diedarkan dalam Scrapy dan kaedah untuk meningkatkan kecekapan merangkak data. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas



Scrapy melaksanakan rangkak artikel dan analisis akaun awam WeChat WeChat ialah aplikasi media sosial yang popular dalam beberapa tahun kebelakangan ini, dan akaun awam yang dikendalikan di dalamnya juga memainkan peranan yang sangat penting. Seperti yang kita sedia maklum, akaun awam WeChat adalah lautan maklumat dan pengetahuan, kerana setiap akaun awam boleh menerbitkan artikel, mesej grafik dan maklumat lain. Maklumat ini boleh digunakan secara meluas dalam banyak bidang, seperti laporan media, penyelidikan akademik, dsb. Jadi, artikel ini akan memperkenalkan cara menggunakan rangka kerja Scrapy untuk merangkak dan menganalisis artikel akaun awam WeChat. Scr

Scrapy ialah rangka kerja perangkak Python sumber terbuka yang boleh mendapatkan data daripada tapak web dengan cepat dan cekap. Walau bagaimanapun, banyak tapak web menggunakan teknologi pemuatan tak segerak Ajax, menjadikannya mustahil untuk Scrapy mendapatkan data secara langsung. Artikel ini akan memperkenalkan kaedah pelaksanaan Scrapy berdasarkan pemuatan tak segerak Ajax. 1. Prinsip pemuatan tak segerak Ajax Pemuatan tak segerak Ajax: Dalam kaedah pemuatan halaman tradisional, selepas pelayar menghantar permintaan kepada pelayan, ia mesti menunggu pelayan mengembalikan respons dan memuatkan keseluruhan halaman sebelum meneruskan ke langkah seterusnya.

Scrapy ialah rangka kerja perangkak berasaskan Python yang boleh mendapatkan maklumat berkaitan dengan cepat dan mudah di Internet. Dalam artikel ini, kami akan menggunakan kes Scrapy untuk menganalisis secara terperinci cara merangkak maklumat syarikat di LinkedIn. Tentukan URL sasaran Mula-mula, kita perlu menjelaskan dengan jelas bahawa sasaran kita ialah maklumat syarikat di LinkedIn. Oleh itu, kita perlu mencari URL halaman maklumat syarikat LinkedIn. Buka laman web LinkedIn, masukkan nama syarikat dalam kotak carian, dan

Scrapy ialah rangka kerja perangkak Python yang berkuasa yang boleh digunakan untuk mendapatkan sejumlah besar data daripada Internet. Walau bagaimanapun, apabila membangunkan Scrapy, kami sering menghadapi masalah merangkak URL pendua, yang membuang banyak masa dan sumber serta menjejaskan kecekapan. Artikel ini akan memperkenalkan beberapa teknik pengoptimuman Scrapy untuk mengurangkan rangkak URL pendua dan meningkatkan kecekapan perangkak Scrapy. 1. Gunakan atribut start_urls dan allowed_domains dalam perangkak Scrapy untuk

Menggunakan Selenium dan PhantomJSScrapy dalam perangkak Scrapy Scrapy ialah rangka kerja perangkak web yang sangat baik di bawah Python dan telah digunakan secara meluas dalam pengumpulan dan pemprosesan data dalam pelbagai bidang. Dalam pelaksanaan perangkak, kadangkala perlu untuk mensimulasikan operasi penyemak imbas untuk mendapatkan kandungan yang dibentangkan oleh tapak web tertentu Dalam kes ini, Selenium dan PhantomJS diperlukan. Selenium mensimulasikan operasi manusia pada penyemak imbas, membolehkan kami mengautomasikan ujian aplikasi web

Scrapy ialah rangka kerja perangkak Python yang berkuasa yang boleh membantu kami mendapatkan data di Internet dengan cepat dan fleksibel. Dalam proses merangkak sebenar, kami sering menghadapi pelbagai format data seperti HTML, XML dan JSON. Dalam artikel ini, kami akan memperkenalkan cara menggunakan Scrapy untuk merangkak ketiga-tiga format data ini masing-masing. 1. Merangkak data HTML dan mencipta projek Scrapy Pertama, kita perlu membuat projek Scrapy. Buka baris arahan dan masukkan arahan berikut: scrapys

Memandangkan aplikasi Internet moden terus berkembang dan meningkat dalam kerumitan, perangkak web telah menjadi alat penting untuk pemerolehan dan analisis data. Sebagai salah satu rangka kerja perangkak paling popular dalam Python, Scrapy mempunyai fungsi yang berkuasa dan antara muka API yang mudah digunakan, yang boleh membantu pembangun merangkak dan memproses data halaman web dengan cepat. Walau bagaimanapun, apabila berhadapan dengan tugas merangkak berskala besar, satu contoh perangkak Scrapy mudah dihadkan oleh sumber perkakasan, jadi Scrapy biasanya perlu disimpan dalam bekas dan digunakan ke bekas Docker.

Dengan perkembangan Internet, orang ramai semakin bergantung kepada Internet untuk mendapatkan maklumat. Bagi pencinta buku, Douban Books telah menjadi platform yang sangat diperlukan. Di samping itu, Douban Books juga menyediakan banyak penilaian dan ulasan buku, membolehkan pembaca memahami buku dengan lebih komprehensif. Walau bagaimanapun, mendapatkan maklumat ini secara manual adalah sama dengan mencari jarum dalam timbunan jerami Pada masa ini, kita boleh menggunakan alat Scrapy untuk merangkak data. Scrapy ialah rangka kerja perangkak web sumber terbuka berdasarkan Python, yang boleh membantu kami dengan cekap
