


Penyelidikan mengenai teknologi pengecaman imej masa nyata menggunakan PHP
Dengan perkembangan pesat teknologi kecerdasan buatan, teknologi pengecaman imej telah menjadi hala tuju penyelidikan yang sangat penting dalam bidang kecerdasan buatan. Sebagai bahasa pengaturcaraan yang digunakan secara meluas, PHP juga boleh digunakan untuk melaksanakan teknologi pengecaman imej. Artikel ini akan memperkenalkan penyelidikan mengenai teknologi pengecaman imej masa nyata dalam PHP dari kedua-dua aspek teori dan praktikal.
1. Pengenalan kepada teknologi pengecaman imej
Teknologi pengecaman imej, juga dikenali sebagai teknologi penglihatan komputer, merujuk kepada teknologi yang menggunakan komputer untuk menganalisis dan mengenal pasti imej. Ia merupakan hala tuju teknikal yang penting dalam bidang kecerdasan buatan dan mempunyai prospek aplikasi yang sangat luas. Pada masa ini, teknologi pengecaman imej telah digunakan secara meluas dalam pengecaman muka, pengecaman plat lesen, pengecaman objek, carian imej dan bidang lain.
2. Prinsip asas PHP melaksanakan teknologi pengecaman imej
PHP boleh menggunakan teknologi pengecaman imej berdasarkan pembelajaran mendalam untuk melaksanakan fungsi pengecaman imej. Teknologi pengecaman imej berdasarkan pembelajaran mendalam ialah kaedah pengecaman imej berdasarkan model rangkaian saraf. Khususnya, ia menggunakan rangkaian neural convolutional (CNN) sebagai pengekstrak ciri dan kemudian menggunakan lapisan bersambung sepenuhnya untuk pengelasan. Rangkaian saraf konvolusi ialah rangkaian pembelajaran mendalam yang boleh mengekstrak ciri daripada imej input melalui operasi konvolusi.
Model pembelajaran mendalam yang menggabungkan rangkaian saraf konvolusi dan lapisan bersambung sepenuhnya dipanggil model rangkaian saraf konvolusi. Apabila melaksanakan fungsi pengecaman imej, kami boleh menggunakan model rangkaian saraf konvolusi yang telah terlatih untuk menukar imej kepada vektor ciri. Kemudian, algoritma pembelajaran mesin digunakan untuk mengklasifikasikan vektor ciri ini untuk mencapai pengecaman imej.
3. Proses merealisasikan pengecaman imej masa nyata
Berikut adalah pengenalan kepada proses asas menggunakan PHP untuk merealisasikan teknologi pengecaman imej masa nyata:
- Dapatkan input imej oleh kamera.
- Tukar imej kepada format yang boleh diproses oleh model rangkaian neural konvolusi.
- Gunakan model rangkaian neural konvolusi yang telah terlatih untuk menukar imej kepada vektor ciri.
- Gunakan algoritma pembelajaran mesin untuk mengklasifikasikan vektor ciri.
- Keluarkan keputusan klasifikasi.
Dalam proses di atas, dua langkah utama ialah menukar imej kepada format yang boleh diproses oleh model rangkaian saraf konvolusi dan mengelaskan vektor ciri menggunakan algoritma pembelajaran mesin. Langkah-langkah ini perlu dilaksanakan menggunakan perpustakaan pemprosesan imej PHP dan perpustakaan pembelajaran mesin yang berkaitan.
4. Pengenalan kepada perpustakaan PHP yang berkaitan
- Perpustakaan pemprosesan imej PHP
Pustaka pemprosesan imej PHP boleh membantu kami menukar imej kepada format yang boleh diproses oleh model rangkaian saraf konvolusi. Perpustakaan pemprosesan imej yang biasa digunakan dalam PHP termasuk GD, Imagick, Gmagick, dsb. Antaranya, perpustakaan GD ialah salah satu perpustakaan pemprosesan imej yang paling biasa digunakan dalam PHP, menyokong imej dalam JPG, GIF, PNG dan format lain. Imagick dan Gmagick juga biasa digunakan perpustakaan pemprosesan imej Mereka menyokong lebih banyak format imej dan lebih banyak fungsi pemprosesan imej.
- Perpustakaan Pembelajaran Mesin PHP
Perpustakaan Pembelajaran Mesin PHP boleh membantu kami melaksanakan algoritma pembelajaran mesin. Pustaka pembelajaran mesin yang biasa digunakan dalam PHP termasuk PHP-ML, DL-PHP, K-iwi, dsb. Antaranya, perpustakaan PHP-ML ialah salah satu perpustakaan pembelajaran mesin yang paling biasa digunakan dalam PHP dan menyokong pelbagai algoritma pembelajaran mesin, termasuk klasifikasi, regresi, pengelompokan, dll.
5. Amalan: Gunakan PHP untuk melaksanakan pengecaman imej masa nyata
Mari gunakan PHP untuk melaksanakan fungsi pengecaman imej masa nyata yang mudah. Mula-mula kita perlu memuat turun model rangkaian saraf konvolusi yang telah terlatih, dan kemudian menggunakan model ini untuk melaksanakan fungsi pengecaman imej.
- Muat turun model rangkaian saraf konvolusi terlatih
Kami boleh memuat turun model rangkaian saraf konvolusi terlatih daripada GitHub, yang dilatih berdasarkan Keras dan TensorFlow. Kita boleh menggunakan perpustakaan TensorFlow PHP untuk memanggil model ini.
- Menggunakan perpustakaan TensorFlow PHP untuk pengecaman imej
Kami menggunakan pustaka TensorFlow PHP untuk memanggil model rangkaian saraf konvolusi yang telah terlatih. Kod khusus adalah seperti berikut:
// 载入TensorFlow库 $loader = new TensorFlowAutoloader(); $loader->register(); // 载入模型 $model = TensorFlowSavedModel::load($modelPath, ['serve']); // 载入图像,使用GD库将图像转换为数组格式 $image = imagecreatefromjpeg($imagePath); $image = imagecreatetruecolor(224, 224); imagecopyresampled($image, $input, 0, 0, 0, 0, 224, 224, imagesx($input), imagesy($input)); $pixels = []; for ($y = 0; $y < 224; ++$y) { for ($x = 0; $x < 224; ++$x) { $color = imagecolorat($image, $x, $y); $r = ($color >> 16) & 0xFF; $g = ($color >> 8) & 0xFF; $b = $color & 0xFF; $pixels[] = ($r + $g + $b) / 3.0 / 255.0; } } $inputTensor = new TensorFlowTensor([array_chunk($pixels, 224)]); // 运行模型 $outputTensor = $model->predict(['input' => $inputTensor]); // 输出结果 $result = $outputTensor->value()->data()->toArray();
Dalam kod di atas, kami menukar imej ke dalam format tatasusunan menggunakan perpustakaan GD, kemudian menghantar imej dalam format tatasusunan kepada model rangkaian neural konvolusi untuk ramalan, dan akhirnya mengeluarkan hasil ramalan.
6 Ringkasan
Artikel ini memperkenalkan prinsip asas dan proses pelaksanaan teknologi pengecaman imej masa nyata dalam PHP, dan memperkenalkan perpustakaan pemprosesan imej PHP dan perpustakaan pembelajaran mesin yang berkaitan. Melalui latihan, kami belajar cara menggunakan PHP untuk melaksanakan fungsi pengecaman imej masa nyata yang mudah, yang mempunyai nilai praktikal yang hebat kepada pembangun PHP.
Atas ialah kandungan terperinci Penyelidikan mengenai teknologi pengecaman imej masa nyata menggunakan PHP. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas





PHP 8.4 membawa beberapa ciri baharu, peningkatan keselamatan dan peningkatan prestasi dengan jumlah penamatan dan penyingkiran ciri yang sihat. Panduan ini menerangkan cara memasang PHP 8.4 atau naik taraf kepada PHP 8.4 pada Ubuntu, Debian, atau terbitan mereka

Jika anda seorang pembangun PHP yang berpengalaman, anda mungkin merasakan bahawa anda telah berada di sana dan telah melakukannya. Anda telah membangunkan sejumlah besar aplikasi, menyahpenyahpepijat berjuta-juta baris kod dan mengubah suai sekumpulan skrip untuk mencapai op

Kod Visual Studio, juga dikenali sebagai Kod VS, ialah editor kod sumber percuma — atau persekitaran pembangunan bersepadu (IDE) — tersedia untuk semua sistem pengendalian utama. Dengan koleksi sambungan yang besar untuk banyak bahasa pengaturcaraan, Kod VS boleh menjadi c

JWT adalah standard terbuka berdasarkan JSON, yang digunakan untuk menghantar maklumat secara selamat antara pihak, terutamanya untuk pengesahan identiti dan pertukaran maklumat. 1. JWT terdiri daripada tiga bahagian: header, muatan dan tandatangan. 2. Prinsip kerja JWT termasuk tiga langkah: menjana JWT, mengesahkan JWT dan muatan parsing. 3. Apabila menggunakan JWT untuk pengesahan di PHP, JWT boleh dijana dan disahkan, dan peranan pengguna dan maklumat kebenaran boleh dimasukkan dalam penggunaan lanjutan. 4. Kesilapan umum termasuk kegagalan pengesahan tandatangan, tamat tempoh, dan muatan besar. Kemahiran penyahpepijatan termasuk menggunakan alat debugging dan pembalakan. 5. Pengoptimuman prestasi dan amalan terbaik termasuk menggunakan algoritma tandatangan yang sesuai, menetapkan tempoh kesahihan dengan munasabah,

Tutorial ini menunjukkan cara memproses dokumen XML dengan cekap menggunakan PHP. XML (bahasa markup extensible) adalah bahasa markup berasaskan teks yang serba boleh yang direka untuk pembacaan manusia dan parsing mesin. Ia biasanya digunakan untuk penyimpanan data

Rentetan adalah urutan aksara, termasuk huruf, nombor, dan simbol. Tutorial ini akan mempelajari cara mengira bilangan vokal dalam rentetan yang diberikan dalam PHP menggunakan kaedah yang berbeza. Vokal dalam bahasa Inggeris adalah a, e, i, o, u, dan mereka boleh menjadi huruf besar atau huruf kecil. Apa itu vokal? Vokal adalah watak abjad yang mewakili sebutan tertentu. Terdapat lima vokal dalam bahasa Inggeris, termasuk huruf besar dan huruf kecil: a, e, i, o, u Contoh 1 Input: String = "TutorialSpoint" Output: 6 menjelaskan Vokal dalam rentetan "TutorialSpoint" adalah u, o, i, a, o, i. Terdapat 6 yuan sebanyak 6

Mengikat statik (statik: :) Melaksanakan pengikatan statik lewat (LSB) dalam PHP, yang membolehkan kelas panggilan dirujuk dalam konteks statik dan bukannya menentukan kelas. 1) Proses parsing dilakukan pada masa runtime, 2) Cari kelas panggilan dalam hubungan warisan, 3) ia boleh membawa overhead prestasi.

Apakah kaedah sihir PHP? Kaedah sihir PHP termasuk: 1. \ _ \ _ Membina, digunakan untuk memulakan objek; 2. \ _ \ _ Destruct, digunakan untuk membersihkan sumber; 3. \ _ \ _ Call, mengendalikan panggilan kaedah yang tidak wujud; 4. \ _ \ _ Mendapatkan, melaksanakan akses atribut dinamik; 5. \ _ \ _ Set, melaksanakan tetapan atribut dinamik. Kaedah ini secara automatik dipanggil dalam situasi tertentu, meningkatkan fleksibiliti dan kecekapan kod.
