


Konfigurasikan sistem Linux untuk menyokong pemprosesan imej dan pembangunan penglihatan komputer
Konfigurasikan sistem Linux untuk menyokong pemprosesan imej dan pembangunan penglihatan komputer
Dalam era digital hari ini, pemprosesan imej dan penglihatan komputer memainkan peranan penting dalam pelbagai bidang. Untuk melakukan pemprosesan imej dan pembangunan penglihatan komputer, kami perlu membuat beberapa konfigurasi pada sistem Linux kami. Artikel ini akan menunjukkan kepada anda cara mengkonfigurasi sistem Linux anda untuk menyokong aplikasi ini dan memberikan beberapa contoh kod.
1. Pasang Python dan perpustakaan yang sepadan
Python ialah bahasa pengaturcaraan yang digunakan secara meluas sesuai untuk pemprosesan imej dan pembangunan penglihatan komputer. Dalam sistem Linux, kami boleh memasang Python melalui pengurus pakej.
Pertama, buka terminal dan masukkan arahan berikut untuk memasang Python:
sudo apt-get update sudo apt-get install python3
Selepas pemasangan selesai, kita boleh menyemak sama ada pemasangan berjaya:
python3 --version
Seterusnya, kita perlu memasang beberapa perpustakaan Python penting seperti NumPy , OpenCV dan Bantal. Jalankan arahan berikut untuk memasang:
pip install numpy opencv-python pillow
Selepas pemasangan selesai, kami boleh melaksanakan beberapa kod mudah untuk menguji sama ada perpustakaan berfungsi dengan betul. Sebagai contoh, laksanakan kod berikut untuk membaca dan memaparkan imej:
import cv2 image_path = 'path/to/your/image.jpg' image = cv2.imread(image_path) cv2.imshow('Image', image) cv2.waitKey(0) cv2.destroyAllWindows()
2. Pasang CUDA dan cuDNN
Jika anda ingin menggunakan GPU untuk pemprosesan imej dan pembangunan penglihatan komputer, maka kami juga perlu memasang CUDA dan cuDNN.
CUDA ialah platform dan API yang dibangunkan oleh NVIDIA untuk pengkomputeran selari. Di Linux, kami boleh memuat turun CUDA dari tapak web rasmi NVIDIA dan memasangnya.
Selepas pemasangan selesai, kami juga perlu memasang cuDNN. cuDNN ialah perpustakaan pecutan untuk rangkaian saraf dalam yang mempercepatkan latihan model dan inferens.
Kami boleh memuat turun cuDNN dari tapak web rasmi NVIDIA dan memasangnya.
Selepas memasang CUDA dan cuDNN, kami boleh menggunakan kod berikut untuk menguji sama ada GPU berfungsi dengan betul:
import torch device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print(device)
Jika hasil output ialah "cuda", ini bermakna GPU telah berjaya dikonfigurasikan dan tersedia.
3 Pasang alat pemprosesan imej dan penglihatan komputer yang lain
Selain Python dan perpustakaan yang berkaitan, kami juga boleh memasang beberapa alat pemprosesan imej dan penglihatan komputer lain untuk membantu pembangunan.
Sebagai contoh, ImageMagick ialah set alat sumber terbuka yang berkuasa yang boleh digunakan untuk memproses dan mengubah imej. Kita boleh menggunakan arahan berikut untuk memasang ImageMagick:
sudo apt-get install imagemagick
Selepas pemasangan selesai, kita boleh menggunakan arahan berikut untuk menguji sama ada ImageMagick berfungsi dengan betul:
convert input.jpg -resize 50% output.jpg
Arahan ini akan membaca imej bernama "input.jpg" dan melaraskan ia Saiz adalah 50% daripada saiz asal, dan kemudian imej yang diproses disimpan sebagai "output.jpg".
Melalui artikel ini, kami mempelajari cara mengkonfigurasi sistem Linux untuk menyokong pemprosesan imej dan pembangunan penglihatan komputer, dan menyediakan beberapa sampel kod untuk rujukan. Saya harap maklumat ini berguna kepada anda, dan saya ucapkan selamat maju jaya dalam laluan anda ke pemprosesan imej dan penglihatan komputer!
Atas ialah kandungan terperinci Konfigurasikan sistem Linux untuk menyokong pemprosesan imej dan pembangunan penglihatan komputer. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas



Jarak Wasserstein, juga dikenali sebagai Jarak EarthMover (EMD), ialah metrik yang digunakan untuk mengukur perbezaan antara dua taburan kebarangkalian. Berbanding dengan perbezaan tradisional KL atau perbezaan JS, jarak Wasserstein mengambil kira maklumat struktur antara pengedaran dan oleh itu mempamerkan prestasi yang lebih baik dalam banyak tugas pemprosesan imej. Dengan mengira kos pengangkutan minimum antara dua pengedaran, jarak Wasserstein dapat mengukur jumlah kerja minimum yang diperlukan untuk mengubah satu pengedaran kepada yang lain. Metrik ini mampu menangkap perbezaan geometri antara taburan, dengan itu memainkan peranan penting dalam tugas seperti penjanaan imej dan pemindahan gaya. Oleh itu, jarak Wasserstein menjadi konsep

Pengesanan objek adalah tugas penting dalam bidang penglihatan komputer, digunakan untuk mengenal pasti objek dalam imej atau video dan mencari lokasinya. Tugasan ini biasanya dibahagikan kepada dua kategori algoritma, satu peringkat dan dua peringkat, yang berbeza dari segi ketepatan dan keteguhan. Algoritma pengesanan sasaran satu peringkat Algoritma pengesanan sasaran satu peringkat menukarkan pengesanan sasaran kepada masalah klasifikasi Kelebihannya ialah ia pantas dan boleh menyelesaikan pengesanan hanya dalam satu langkah. Walau bagaimanapun, disebabkan terlalu memudahkan, ketepatan biasanya tidak sebaik algoritma pengesanan objek dua peringkat. Algoritma pengesanan sasaran satu peringkat biasa termasuk YOLO, SSD dan FasterR-CNN. Algoritma ini biasanya mengambil keseluruhan imej sebagai input dan menjalankan pengelas untuk mengenal pasti objek sasaran. Tidak seperti algoritma pengesanan sasaran dua peringkat tradisional, mereka tidak perlu menentukan kawasan terlebih dahulu, tetapi meramalkan secara langsung

VisionTransformer (VIT) ialah model klasifikasi imej berasaskan Transformer yang dicadangkan oleh Google. Tidak seperti model CNN tradisional, VIT mewakili imej sebagai jujukan dan mempelajari struktur imej dengan meramalkan label kelas imej. Untuk mencapai matlamat ini, VIT membahagikan imej input kepada berbilang patch dan menggabungkan piksel dalam setiap patch melalui saluran dan kemudian melakukan unjuran linear untuk mencapai dimensi input yang dikehendaki. Akhir sekali, setiap tampalan diratakan menjadi satu vektor, membentuk urutan input. Melalui mekanisme perhatian kendiri Transformer, VIT dapat menangkap hubungan antara tampalan yang berbeza dan melakukan pengekstrakan ciri dan ramalan klasifikasi yang berkesan. Perwakilan imej bersiri ini ialah

Pemulihan foto lama ialah kaedah menggunakan teknologi kecerdasan buatan untuk membaiki, menambah baik dan menambah baik foto lama. Menggunakan penglihatan komputer dan algoritma pembelajaran mesin, teknologi ini secara automatik boleh mengenal pasti dan membaiki kerosakan dan kecacatan pada foto lama, menjadikannya kelihatan lebih jelas, lebih semula jadi dan lebih realistik. Prinsip teknikal pemulihan foto lama terutamanya merangkumi aspek-aspek berikut: 1. Penyahnosian dan penambahbaikan imej Apabila memulihkan foto lama, foto itu perlu dibunyikan dan dipertingkatkan terlebih dahulu. Algoritma dan penapis pemprosesan imej, seperti penapisan min, penapisan Gaussian, penapisan dua hala, dsb., boleh digunakan untuk menyelesaikan masalah bunyi dan bintik warna, dengan itu meningkatkan kualiti foto. 2. Pemulihan dan pembaikan imej Dalam foto lama, mungkin terdapat beberapa kecacatan dan kerosakan, seperti calar, retak, pudar, dsb. Masalah ini boleh diselesaikan dengan algoritma pemulihan dan pembaikan imej

Pembinaan semula imej resolusi super ialah proses menjana imej resolusi tinggi daripada imej resolusi rendah menggunakan teknik pembelajaran mendalam seperti rangkaian neural convolutional (CNN) dan rangkaian adversarial generatif (GAN). Matlamat kaedah ini adalah untuk meningkatkan kualiti dan perincian imej dengan menukar imej resolusi rendah kepada imej resolusi tinggi. Teknologi ini mempunyai aplikasi yang luas dalam banyak bidang, seperti pengimejan perubatan, kamera pengawasan, imej satelit, dsb. Melalui pembinaan semula imej resolusi super, kami boleh mendapatkan imej yang lebih jelas dan terperinci, membantu menganalisis dan mengenal pasti sasaran dan ciri dalam imej dengan lebih tepat. Kaedah pembinaan semula Kaedah pembinaan semula imej resolusi super secara amnya boleh dibahagikan kepada dua kategori: kaedah berasaskan interpolasi dan kaedah berasaskan pembelajaran mendalam. 1) Kaedah berasaskan interpolasi Pembinaan semula imej resolusi super berdasarkan interpolasi

Nota kajian PHP: Pengecaman muka dan pemprosesan imej Prakata: Dengan perkembangan teknologi kecerdasan buatan, pengecaman muka dan pemprosesan imej telah menjadi topik hangat. Dalam aplikasi praktikal, pengecaman muka dan pemprosesan imej kebanyakannya digunakan dalam pemantauan keselamatan, buka kunci muka, perbandingan kad, dsb. Sebagai bahasa skrip sebelah pelayan yang biasa digunakan, PHP juga boleh digunakan untuk melaksanakan fungsi yang berkaitan dengan pengecaman muka dan pemprosesan imej. Artikel ini akan membawa anda melalui pengecaman muka dan pemprosesan imej dalam PHP, dengan contoh kod khusus. 1. Pengecaman muka dalam PHP Pengecaman muka ialah a

Cara menangani pemprosesan imej dan isu reka bentuk antara muka grafik dalam pembangunan C# memerlukan contoh kod khusus Pengenalan: Dalam pembangunan perisian moden, pemprosesan imej dan reka bentuk antara muka grafik adalah keperluan biasa. Sebagai bahasa pengaturcaraan peringkat tinggi tujuan umum, C# mempunyai pemprosesan imej yang berkuasa dan keupayaan reka bentuk antara muka grafik. Artikel ini akan berdasarkan C#, membincangkan cara menangani pemprosesan imej dan isu reka bentuk antara muka grafik, dan memberikan contoh kod terperinci. 1. Isu pemprosesan imej: Bacaan dan paparan imej: Dalam C#, bacaan dan paparan imej adalah operasi asas. Boleh digunakan.N

Algoritma Scale Invariant Feature Transform (SIFT) ialah algoritma pengekstrakan ciri yang digunakan dalam bidang pemprosesan imej dan penglihatan komputer. Algoritma ini telah dicadangkan pada tahun 1999 untuk meningkatkan pengecaman objek dan prestasi pemadanan dalam sistem penglihatan komputer. Algoritma SIFT adalah teguh dan tepat dan digunakan secara meluas dalam pengecaman imej, pembinaan semula tiga dimensi, pengesanan sasaran, penjejakan video dan medan lain. Ia mencapai invarian skala dengan mengesan titik utama dalam ruang skala berbilang dan mengekstrak deskriptor ciri tempatan di sekitar titik utama. Langkah-langkah utama algoritma SIFT termasuk pembinaan ruang skala, pengesanan titik utama, kedudukan titik utama, penetapan arah dan penjanaan deskriptor ciri. Melalui langkah-langkah ini, algoritma SIFT boleh mengekstrak ciri yang teguh dan unik, dengan itu mencapai pemprosesan imej yang cekap.
