Rumah pembangunan bahagian belakang tutorial php Langkah-langkah pelaksanaan algoritma genetik dalam PHP

Langkah-langkah pelaksanaan algoritma genetik dalam PHP

Jul 07, 2023 am 11:49 AM
php algoritma genetik Langkah-langkah pelaksanaan

Langkah pelaksanaan algoritma genetik dalam PHP

Pengenalan:
Algoritma genetik ialah algoritma pengoptimuman berdasarkan prinsip evolusi Dengan mensimulasikan proses genetik dan evolusi dalam alam semula jadi, ia boleh mencari penyelesaian optimum dalam ruang penyelesaian masalah carian. Dalam PHP, kita boleh menggunakan algoritma genetik untuk menyelesaikan beberapa masalah pengoptimuman, seperti menyelesaikan pengoptimuman parameter, pembelajaran mesin, masalah penjadualan, dsb. Artikel ini akan memperkenalkan langkah pelaksanaan algoritma genetik dalam PHP dan menyediakan contoh kod yang berkaitan.

1. Memulakan populasi
Dalam algoritma genetik, populasi merujuk kepada satu set penyelesaian untuk dioptimumkan. Pertama, kita perlu menentukan saiz populasi dan cara setiap individu dikodkan. Kaedah pengekodan yang biasa digunakan termasuk binari, integer, titik terapung, dsb. Pilih kaedah pengekodan yang sesuai mengikut ciri masalah. Berikut ialah contoh kod untuk memulakan populasi:

function generateIndividual($chromosome_length) {
    $individual = [];
    for($i = 0; $i < $chromosome_length; $i++){
        $gene = mt_rand(0, 1);
        $individual[] = $gene;
    }
    return $individual;
}

function generatePopulation($population_size, $chromosome_length) {
    $population = [];
    for ($i = 0; $i < $population_size; $i++) {
        $individual = generateIndividual($chromosome_length);
        $population[] = $individual;
    }
    return $population;
}
Salin selepas log masuk

2. Fungsi kecergasan
Fungsi kecergasan digunakan untuk menilai kecergasan setiap individu dalam populasi, iaitu kualiti penyelesaian. Mengikut ciri-ciri masalah pengoptimuman, fungsi kecergasan boleh direka bentuk supaya individu yang mempunyai kecergasan yang tinggi mempunyai kebarangkalian yang lebih tinggi untuk dipilih dalam pemilihan, silang dan mutasi. Berikut ialah contoh fungsi kecergasan mudah:

function fitnessFunction($individual) {
    $fitness = 0;
    foreach ($individual as $gene) {
        $fitness += $gene;
    }
    return $fitness;
}
Salin selepas log masuk

3. Operasi pemilihan
Operasi pemilihan merujuk kepada pemilihan beberapa individu daripada populasi sebagai ibu bapa untuk membiak generasi seterusnya. Matlamat operasi pemilihan adalah untuk memilih individu yang mempunyai kecergasan yang tinggi supaya maklumat genetik yang sangat baik dapat disampaikan kepada generasi akan datang. Pemilihan biasanya dibuat menggunakan kaedah seperti pemilihan rolet, pemilihan kejohanan, dsb. Berikut ialah contoh pemilihan rolet mudah:

function selection($population, $fitness_values) {
    $total_fitness = array_sum($fitness_values);
    $probabilities = [];
    foreach ($fitness_values as $fitness) {
        $probabilities[] = $fitness / $total_fitness;
    }
    $selected_individuals = [];
    for ($i = 0; $i < count($population); $i++) {
        $random_number = mt_rand() / mt_getrandmax();
        $probability_sum = 0;
        for ($j = 0; $j < $population_size; $j++) {
            $probability_sum += $probabilities[$j];
            if ($random_number < $probability_sum) {
                $selected_individuals[] = $population[$j];
                break;
            }
        }
    }
    return $selected_individuals;
}
Salin selepas log masuk

4. Operasi silang
Operasi silang merujuk kepada memilih beberapa individu daripada individu induk untuk pertukaran gen bagi menghasilkan individu generasi seterusnya. Matlamat operasi silang adalah untuk mendapatkan maklumat genetik yang lebih baik dengan menukar gen. Berikut ialah contoh silang dua mata mudah:

function crossover($parent1, $parent2) {
    $chromosome_length = count($parent1);
    $crossover_point1 = mt_rand(1, $chromosome_length - 1);
    $crossover_point2 = mt_rand($crossover_point1, $chromosome_length - 1);
    $child1 = array_merge(array_slice($parent2, 0, $crossover_point1),
                        array_slice($parent1, $crossover_point1,
                        $crossover_point2 - $crossover_point1),
                        array_slice($parent2, $crossover_point2));
    $child2 = array_merge(array_slice($parent1, 0, $crossover_point1),
                        array_slice($parent2, $crossover_point1,
                        $crossover_point2 - $crossover_point1),
                        array_slice($parent1, $crossover_point2));
    return [$child1, $child2];
}
Salin selepas log masuk

5. Operasi mutasi
Operasi mutasi merujuk kepada mutasi gen individu secara rawak untuk meningkatkan kepelbagaian populasi dan mengelakkan daripada terjerumus ke dalam penyelesaian optimum tempatan. Mutasi biasanya dicapai dengan memilih kedudukan gen secara rawak dan secara rawak mengubah nilainya. Berikut ialah contoh operasi mutasi mudah:

function mutation($individual, $mutation_rate) {
    for ($i = 0; $i < count($individual); $i++) {
        $random_number = mt_rand() / mt_getrandmax();
        if ($random_number < $mutation_rate) {
            $individual[$i] = 1 - $individual[$i];
        }
    }
    return $individual;
}
Salin selepas log masuk

6. Lelaran algoritma
Empat operasi di atas (pemilihan, silang, mutasi) membentuk operasi asas algoritma genetik. Melalui berbilang lelaran, pemilihan, persilangan dan operasi mutasi dilakukan untuk mengoptimumkan kualiti penyelesaian secara beransur-ansur sehingga syarat penamatan dipenuhi (seperti mencapai bilangan lelaran maksimum atau mencapai penyelesaian optimum). Berikut ialah contoh proses lelaran algoritma genetik:

function geneticAlgorithm($population_size, $chromosome_length, $mutation_rate, $max_generations) {
    $population = generatePopulation($population_size, $chromosome_length);
    $generation = 0;
    while ($generation < $max_generations) {
        $fitness_values = [];
        foreach ($population as $individual) {
            $fitness_values[] = fitnessFunction($individual);
        }
        $selected_individuals = selection($population, $fitness_values);
        $next_population = $selected_individuals;
        while (count($next_population) < $population_size) {
            $parent1 = $selected_individuals[mt_rand(0, count($selected_individuals) - 1)];
            $parent2 = $selected_individuals[mt_rand(0, count($selected_individuals) - 1)];
            list($child1, $child2) = crossover($parent1, $parent2);
            $child1 = mutation($child1, $mutation_rate);
            $child2 = mutation($child2, $mutation_rate);
            $next_population[] = $child1;
            $next_population[] = $child2;
        }
        $population = $next_population;
        $generation++;
    }
    // 取得最佳个体
    $fitness_values = [];
    foreach ($population as $individual) {
        $fitness_values[] = fitnessFunction($individual);
    }
    $best_individual_index = array_search(max($fitness_values), $fitness_values);
    $best_individual = $population[$best_individual_index];
    return $best_individual;
}
Salin selepas log masuk

Kesimpulan:
Artikel ini memperkenalkan langkah pelaksanaan algoritma genetik dalam PHP dan menyediakan contoh kod yang berkaitan. Dengan memulakan populasi, mereka bentuk fungsi kecergasan, melakukan pemilihan, operasi silang dan mutasi, dan mengoptimumkan kualiti penyelesaian melalui berbilang lelaran, kami boleh menggunakan algoritma genetik untuk menyelesaikan beberapa masalah pengoptimuman. Saya harap artikel ini akan membantu anda memahami dan melaksanakan algoritma genetik dalam PHP.

Atas ialah kandungan terperinci Langkah-langkah pelaksanaan algoritma genetik dalam PHP. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

AI Hentai Generator

AI Hentai Generator

Menjana ai hentai secara percuma.

Artikel Panas

R.E.P.O. Kristal tenaga dijelaskan dan apa yang mereka lakukan (kristal kuning)
2 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌
Repo: Cara menghidupkan semula rakan sepasukan
1 bulan yang lalu By 尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: Cara mendapatkan biji gergasi
4 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌

Alat panas

Notepad++7.3.1

Notepad++7.3.1

Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina

SublimeText3 versi Cina

Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1

Hantar Studio 13.0.1

Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6

Dreamweaver CS6

Alat pembangunan web visual

SublimeText3 versi Mac

SublimeText3 versi Mac

Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Konfigurasi Projek CakePHP Konfigurasi Projek CakePHP Sep 10, 2024 pm 05:25 PM

Dalam bab ini, kita akan memahami Pembolehubah Persekitaran, Konfigurasi Umum, Konfigurasi Pangkalan Data dan Konfigurasi E-mel dalam CakePHP.

Panduan Pemasangan dan Naik Taraf PHP 8.4 untuk Ubuntu dan Debian Panduan Pemasangan dan Naik Taraf PHP 8.4 untuk Ubuntu dan Debian Dec 24, 2024 pm 04:42 PM

PHP 8.4 membawa beberapa ciri baharu, peningkatan keselamatan dan peningkatan prestasi dengan jumlah penamatan dan penyingkiran ciri yang sihat. Panduan ini menerangkan cara memasang PHP 8.4 atau naik taraf kepada PHP 8.4 pada Ubuntu, Debian, atau terbitan mereka

Tarikh dan Masa CakePHP Tarikh dan Masa CakePHP Sep 10, 2024 pm 05:27 PM

Untuk bekerja dengan tarikh dan masa dalam cakephp4, kami akan menggunakan kelas FrozenTime yang tersedia.

Muat naik Fail CakePHP Muat naik Fail CakePHP Sep 10, 2024 pm 05:27 PM

Untuk mengusahakan muat naik fail, kami akan menggunakan pembantu borang. Di sini, adalah contoh untuk muat naik fail.

Penghalaan CakePHP Penghalaan CakePHP Sep 10, 2024 pm 05:25 PM

Dalam bab ini, kita akan mempelajari topik berikut yang berkaitan dengan penghalaan ?

Bincangkan CakePHP Bincangkan CakePHP Sep 10, 2024 pm 05:28 PM

CakePHP ialah rangka kerja sumber terbuka untuk PHP. Ia bertujuan untuk menjadikan pembangunan, penggunaan dan penyelenggaraan aplikasi lebih mudah. CakePHP adalah berdasarkan seni bina seperti MVC yang berkuasa dan mudah difahami. Model, Pandangan dan Pengawal gu

Cara Menyediakan Kod Visual Studio (Kod VS) untuk Pembangunan PHP Cara Menyediakan Kod Visual Studio (Kod VS) untuk Pembangunan PHP Dec 20, 2024 am 11:31 AM

Kod Visual Studio, juga dikenali sebagai Kod VS, ialah editor kod sumber percuma — atau persekitaran pembangunan bersepadu (IDE) — tersedia untuk semua sistem pengendalian utama. Dengan koleksi sambungan yang besar untuk banyak bahasa pengaturcaraan, Kod VS boleh menjadi c

Pengesah Mencipta CakePHP Pengesah Mencipta CakePHP Sep 10, 2024 pm 05:26 PM

Pengesah boleh dibuat dengan menambah dua baris berikut dalam pengawal.

See all articles