Rumah pembangunan bahagian belakang Tutorial Python Ajar anda langkah demi langkah cara menggunakan Flask untuk membina enjin carian ES (Praktikal)

Ajar anda langkah demi langkah cara menggunakan Flask untuk membina enjin carian ES (Praktikal)

Jul 25, 2023 pm 05:24 PM
flask

Mula menggunakan Flask Bina ES Cari.



Ajar anda langkah demi langkah cara menggunakan Flask untuk membina enjin carian ES (Praktikal)
1

Fail konfigurasi



Config.py

#coding:utf-8
import os
DB_USERNAME = 'root'
DB_PASSWORD = None # 如果没有密码的话
DB_HOST = '127.0.0.1'
DB_PORT = '3306'
DB_NAME = 'flask_es'

class Config:
    SECRET_KEY ="随机字符" # 随机 SECRET_KEY
    SQLALCHEMY_COMMIT_ON_TEARDOWN = True # 自动提交
    SQLALCHEMY_TRACK_MODIFICATIONS = True # 自动sql
    DEBUG = True # debug模式
    SQLALCHEMY_DATABASE_URI = 'mysql+pymysql://%s:%s@%s:%s/%s' % (DB_USERNAME, DB_PASSWORD,DB_HOST, DB_PORT, DB_NAME) #数据库URL

    MAIL_SERVER = 'smtp.qq.com'
    MAIL_POST = 465
    MAIL_USERNAME = '3417947630@qq.com'
    MAIL_PASSWORD = '邮箱授权码'
    FLASK_MAIL_SUBJECT_PREFIX='M_KEPLER'
    FLASK_MAIL_SENDER=MAIL_USERNAME # 默认发送人
    # MAIL_USE_SSL = True
    MAIL_USE_TLS = False
    MAIL_DEBUG = False
    ENABLE_THREADS=True
Salin selepas log masuk

Ini adalah fail

Flask Config Sudah tentu, sambungan pangkalan data tidak diperlukan untuk projek semasa saya hanya menggunakan Mysql

untuk tujuan tambahan. Untuk pangkalan data,
ES
sudah memadai. Kemudian pemberitahuan e-mel akan bergantung pada keperluan peribadi...



2
Ajar anda langkah demi langkah cara menggunakan Flask untuk membina enjin carian ES (Praktikal)

2


Logger.py

Modul log adalah bahagian yang sangat diperlukan dalam aplikasi kejuruteraan. Ia sangat diperlukan untuk mengeluarkan fail log mengikut persekitaran pengeluaran yang berbeza. Untuk menggunakan pepatah Jianghu: "Jika tiada fail log, anda tidak tahu bagaimana untuk mati..."

# coding=utf-8
import os
import logging
import logging.config as log_conf
import datetime
import coloredlogs

coloredlogs.DEFAULT_FIELD_STYLES = {'asctime': {'color': 'green'}, 'hostname': {'color': 'magenta'}, 'levelname': {'color': 'magenta', 'bold': False}, 'name': {'color': 'green'}}

log_dir = os.path.dirname(os.path.dirname(__file__)) + '/logs'
if not os.path.exists(log_dir):
    os.mkdir(log_dir)
today = datetime.datetime.now().strftime("%Y-%m-%d")

log_path = os.path.join(log_dir, today + ".log")

log_config = {
    'version': 1.0,

    # 格式输出
    'formatters': {
        'colored_console': {
                        'format': "%(asctime)s - %(name)s - %(levelname)s - %(message)s",
                        'datefmt': '%H:%M:%S'
        },
        'detail': {
            'format': '%(asctime)s - %(name)s - %(levelname)s - %(message)s',
            'datefmt': "%Y-%m-%d %H:%M:%S"  #时间格式
        },
    },

    'handlers': {
        'console': {
            'class': 'logging.StreamHandler', 
            'level': 'DEBUG',
            'formatter': 'colored_console'
        },
        'file': {
            'class': 'logging.handlers.RotatingFileHandler',  
            'maxBytes': 1024 * 1024 * 1024,  
            'backupCount': 1, 
            'filename': log_path, 
            'level': 'INFO',  
            'formatter': 'detail',  # 
            'encoding': 'utf-8',  # utf8 编码  防止出现编码错误
        },
    },

    'loggers': {
        'logger': {
            'handlers': ['console'],  
            'level': 'DEBUG', 
        },

    }
}

log_conf.dictConfig(log_config)
log_v = logging.getLogger('log')

coloredlogs.install(level='DEBUG', logger=log_v)


# # Some examples.
# logger.debug("this is a debugging message")
# logger.info("this is an informational message")
# logger.warning("this is a warning message")
# logger.error("this is an error message")
# logger.critical("this is a critical message")
Salin selepas log masuk
🎜🎜Berikut ialah fail konfigurasi log yang biasa saya gunakan, yang boleh digunakan sebagai yang biasa digunakan Format log boleh dipanggil terus Ia akan dikeluarkan ke terminal atau fail 🎜.log 🎜 mengikut tahap yang berbeza Anda boleh mengambilnya tanpa sebarang ucapan terima kasih. 🎜🎜

Ajar anda langkah demi langkah cara menggunakan Flask untuk membina enjin carian ES (Praktikal)
3

路由

对于 Flask 项目而言, 蓝图和路由会让整个项目更具观赏性(当然指的是代码的阅读)。

这里我采用两个分支来作为数据支撑,一个是 Math 入口,另一个是 Baike 入口,数据的来源是基于上一篇的百度百科爬虫所得,根据 深度优先 的爬取方式抓取后放入 ES 中。

# coding:utf8
from flask import Flask
from flask_sqlalchemy import SQLAlchemy
from app.config.config import Config
from flask_mail import Mail
from flask_wtf.csrf import CSRFProtect

app = Flask(__name__,template_folder='templates',static_folder='static')
app.config.from_object(Config)

db = SQLAlchemy(app)
db.init_app(app)

csrf = CSRFProtect(app)
mail = Mail(app)
# 不要在生成db之前导入注册蓝图。
from app.home.baike import baike as baike_blueprint
from app.home.math import math as math_blueprint
from app.home.home import home as home_blueprint

app.register_blueprint(home_blueprint)
app.register_blueprint(math_blueprint,url_prefix="/math")
app.register_blueprint(baike_blueprint,url_prefix="/baike")
Salin selepas log masuk
# -*- coding:utf-8 -*-
from flask import Blueprint
baike = Blueprint("baike", __name__)

from app.home.baike import views
Salin selepas log masuk
# -*- coding:utf-8 -*-
from flask import Blueprint
math = Blueprint("math", __name__)

from app.home.math import views
Salin selepas log masuk

声明路由并在 __init__ 文件中初始化

下面来看看路由的实现(以Baike为例)

# -*- coding:utf-8 -*-
import os
from flask_paginate import Pagination, get_page_parameter
from app.Logger.logger import log_v
from app.elasticsearchClass import elasticSearch

from app.home.forms import SearchForm

from app.home.baike import baike
from flask import request, jsonify, render_template, redirect

baike_es = elasticSearch(index_type="baike_data",index_name="baike")

@baike.route("/")
def index():
    searchForm = SearchForm()
    return render_template('baike/index.html', searchForm=searchForm)

@baike.route("/search", methods=['GET', 'POST'])
def baikeSearch():
    search_key = request.args.get("b", default=None)
    if search_key:
        searchForm = SearchForm()
        log_v.error("[+] Search Keyword: " + search_key)
        match_data = baike_es.search(search_key,count=30)

        # 翻页
        PER_PAGE = 10
        page = request.args.get(get_page_parameter(), type=int, default=1)
        start = (page - 1) * PER_PAGE
        end = start + PER_PAGE
        total = 30
        print("最大数据总量:", total)
        pagination = Pagination(page=page, start=start, end=end, total=total)
        context = {
            'match_data': match_data["hits"]["hits"][start:end],
            'pagination': pagination,
            'uid_link': "/baike/"
        }
        return render_template('data.html', q=search_key, searchForm=searchForm, **context)
    return redirect('home.index')


@baike.route(&#39;/<uid>&#39;)
def baikeSd(uid):
    base_path = os.path.abspath(&#39;app/templates/s_d/&#39;)
    old_file = os.listdir(base_path)[0]
    old_path = os.path.join(base_path, old_file)
    file_path = os.path.abspath(&#39;app/templates/s_d/{}.html&#39;.format(uid))
    if not os.path.exists(file_path):
        log_v.debug("[-] File does not exist, renaming !!!")
        os.rename(old_path, file_path)
    match_data = baike_es.id_get_doc(uid=uid)
    return render_template(&#39;s_d/{}.html&#39;.format(uid), match_data=match_data)
Salin selepas log masuk

可以看到我们成功的将 elasticSearch 类初始化并且进行了数据搜索。

我们使用了 Flask 的分页插件进行分页并进行了单页数量的限制,根据 Uid 来跳转到详情页中。

细心的小伙伴会发现我这里用了个小技巧

@baike.route(&#39;/<uid>&#39;)
def baikeSd(uid):
    base_path = os.path.abspath(&#39;app/templates/s_d/&#39;)
    old_file = os.listdir(base_path)[0]
    old_path = os.path.join(base_path, old_file)
    file_path = os.path.abspath(&#39;app/templates/s_d/{}.html&#39;.format(uid))
    if not os.path.exists(file_path):
        log_v.debug("[-] File does not exist, renaming !!!")
        os.rename(old_path, file_path)
    match_data = baike_es.id_get_doc(uid=uid)
    return render_template(&#39;s_d/{}.html&#39;.format(uid), match_data=match_data)
Salin selepas log masuk

以此来保证存放详情页面的模板中始终只保留一个 html 文件。


Ajar anda langkah demi langkah cara menggunakan Flask untuk membina enjin carian ES (Praktikal)
4

项目启动

一如既往的采用 flask_script 作为项目的启动方案,确实方便。

# coding:utf8
from app import app
from flask_script import Manager, Server

manage = Manager(app)

# 启动命令
manage.add_command("runserver", Server(use_debugger=True))


if __name__ == "__main__":
    manage.run()
Salin selepas log masuk

黑窗口键入

python manage.py runserver
Salin selepas log masuk

就可以启动项目,默认端口 5000,访问 http://127.0.0.1:5000


Ajar anda langkah demi langkah cara menggunakan Flask untuk membina enjin carian ES (Praktikal)


使用gunicorn启动

pip install gunicorn
Salin selepas log masuk
#encoding:utf-8
import multiprocessing

from gevent import monkey
monkey.patch_all()

# 并行工作进程数
workers = multiprocessing.cpu_count() * 2 + 1

debug = True

reload = True # 自动重新加载

loglevel = &#39;debug&#39;

# 指定每个工作者的线程数
threads = 2

# 转发为监听端口8000
bind = &#39;0.0.0.0:5001&#39;

# 设置守护进程,将进程交给supervisor管理
daemon = &#39;false&#39;

# 工作模式协程
worker_class = &#39;gevent&#39;

# 设置最大并发量
worker_connections = 2000

# 设置进程文件目录
pidfile = &#39;log/gunicorn.pid&#39;
logfile = &#39;log/debug.log&#39;

# 设置访问日志和错误信息日志路径
accesslog = &#39;log/gunicorn_acess.log&#39;
errorlog = &#39;log/gunicorn_error.log&#39;
Salin selepas log masuk

利用配置文件来启动 gunicorn 服务器

gunicorn -c gconfig.py manage:app
Salin selepas log masuk

项目截图

Ajar anda langkah demi langkah cara menggunakan Flask untuk membina enjin carian ES (Praktikal)


Ajar anda langkah demi langkah cara menggunakan Flask untuk membina enjin carian ES (Praktikal)


Ajar anda langkah demi langkah cara menggunakan Flask untuk membina enjin carian ES (Praktikal)

Atas ialah kandungan terperinci Ajar anda langkah demi langkah cara menggunakan Flask untuk membina enjin carian ES (Praktikal). Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

Video Face Swap

Video Face Swap

Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Alat panas

Notepad++7.3.1

Notepad++7.3.1

Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina

SublimeText3 versi Cina

Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1

Hantar Studio 13.0.1

Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6

Dreamweaver CS6

Alat pembangunan web visual

SublimeText3 versi Mac

SublimeText3 versi Mac

Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Cara membina aplikasi web yang ringkas dan mudah digunakan dengan React dan Flask Cara membina aplikasi web yang ringkas dan mudah digunakan dengan React dan Flask Sep 27, 2023 am 11:09 AM

Cara menggunakan React dan Flask untuk membina aplikasi web yang ringkas dan mudah digunakan Pengenalan: Dengan perkembangan Internet, keperluan aplikasi web menjadi semakin pelbagai dan kompleks. Untuk memenuhi keperluan pengguna untuk kemudahan penggunaan dan prestasi, semakin penting untuk menggunakan tindanan teknologi moden untuk membina aplikasi rangkaian. React dan Flask ialah dua rangka kerja yang sangat popular untuk pembangunan bahagian hadapan dan belakang, dan ia berfungsi dengan baik bersama-sama untuk membina aplikasi web yang ringkas dan mudah digunakan. Artikel ini akan memperincikan cara memanfaatkan React dan Flask

Django vs. Flask: Analisis perbandingan rangka kerja web Python Django vs. Flask: Analisis perbandingan rangka kerja web Python Jan 19, 2024 am 08:36 AM

Django dan Flask adalah kedua-duanya peneraju dalam rangka kerja Web Python, dan kedua-duanya mempunyai kelebihan dan senario yang boleh digunakan. Artikel ini akan menjalankan analisis perbandingan kedua-dua rangka kerja ini dan memberikan contoh kod khusus. Pengenalan Pembangunan Django ialah rangka kerja Web berciri penuh, tujuan utamanya adalah untuk membangunkan aplikasi Web yang kompleks dengan cepat. Django menyediakan banyak fungsi terbina dalam, seperti ORM (Pemetaan Hubungan Objek), borang, pengesahan, bahagian belakang pengurusan, dsb. Ciri-ciri ini membolehkan Django mengendalikan besar

Mulakan dari awal dan bimbing anda langkah demi langkah untuk memasang Flask dan segera buat blog peribadi Mulakan dari awal dan bimbing anda langkah demi langkah untuk memasang Flask dan segera buat blog peribadi Feb 19, 2024 pm 04:01 PM

Bermula dari awal, saya akan mengajar anda langkah demi langkah cara memasang Flask dan cepat membina blog peribadi Sebagai seorang yang suka menulis, mempunyai blog peribadi adalah sangat penting. Sebagai rangka kerja Web Python yang ringan, Flask boleh membantu kami membina blog peribadi yang ringkas dan berfungsi sepenuhnya dengan cepat. Dalam artikel ini, saya akan bermula dari awal dan mengajar anda langkah demi langkah cara memasang Flask dan membina blog peribadi dengan cepat. Langkah 1: Pasang Python dan pip Sebelum bermula, kita perlu memasang Python dan pi terlebih dahulu

Panduan untuk memasang rangka kerja Flask: Langkah terperinci untuk membantu anda memasang Flask dengan betul Panduan untuk memasang rangka kerja Flask: Langkah terperinci untuk membantu anda memasang Flask dengan betul Feb 18, 2024 pm 10:51 PM

Tutorial pemasangan rangka kerja Flask: Ajar anda langkah demi langkah cara memasang rangka kerja Flask dengan betul. Contoh kod khusus diperlukan. Ia mudah dipelajari, mudah digunakan dan padat dengan ciri yang hebat. Artikel ini akan membawa anda langkah demi langkah untuk memasang rangka kerja Flask dengan betul dan memberikan contoh kod terperinci untuk rujukan. Langkah 1: Pasang Python Sebelum memasang rangka kerja Flask, anda perlu terlebih dahulu memastikan bahawa Python dipasang pada komputer anda. Anda boleh bermula dari P

Penyepaduan Flask dan Intellij IDEA: Petua pembangunan aplikasi web Python (Bahagian 2) Penyepaduan Flask dan Intellij IDEA: Petua pembangunan aplikasi web Python (Bahagian 2) Jun 17, 2023 pm 01:58 PM

Bahagian pertama memperkenalkan penyepaduan Flask dan Intellij IDEA asas, tetapan projek dan persekitaran maya, pemasangan pergantungan, dsb. Seterusnya kami akan terus meneroka lebih banyak petua pembangunan aplikasi web Python untuk membina persekitaran kerja yang lebih cekap: Menggunakan FlaskBlueprintsFlaskBlueprints membolehkan anda mengatur kod aplikasi anda untuk pengurusan dan penyelenggaraan yang lebih mudah. Blueprint ialah modul Python yang membungkus

Membandingkan prestasi Gunicorn dan uWSGI untuk penggunaan aplikasi Flask Membandingkan prestasi Gunicorn dan uWSGI untuk penggunaan aplikasi Flask Jan 17, 2024 am 08:52 AM

Penggunaan aplikasi flask: Perbandingan Gunicorn vs suWSGI Pengenalan: Flask, sebagai rangka kerja Web Python yang ringan, disukai oleh banyak pembangun. Apabila menggunakan aplikasi Flask ke persekitaran pengeluaran, memilih Antara Muka Gerbang Pelayan (SGI) yang sesuai adalah keputusan penting. Gunicorn dan uWSGI ialah dua pelayan SGI biasa Artikel ini akan menerangkannya secara terperinci.

Flask vs FastAPI: Pilihan terbaik untuk pembangunan API Web yang cekap Flask vs FastAPI: Pilihan terbaik untuk pembangunan API Web yang cekap Sep 27, 2023 pm 09:01 PM

FlaskvsFastAPI: Pilihan terbaik untuk pembangunan WebAPI yang cekap Pengenalan: Dalam pembangunan perisian moden, WebAPI telah menjadi bahagian yang sangat diperlukan. Mereka menyediakan data dan perkhidmatan yang membolehkan komunikasi dan saling kendali antara aplikasi yang berbeza. Apabila memilih rangka kerja untuk membangunkan WebAPI, Flask dan FastAPI ialah dua pilihan yang telah menarik banyak perhatian. Kedua-dua rangka kerja sangat popular dan masing-masing mempunyai kelebihan tersendiri. Dalam artikel ini, kita akan melihat Fl

Flask-RESTful dan Swagger: Amalan terbaik untuk membina API RESTful dalam aplikasi web Python (Bahagian 2) Flask-RESTful dan Swagger: Amalan terbaik untuk membina API RESTful dalam aplikasi web Python (Bahagian 2) Jun 17, 2023 am 10:39 AM

Flask-RESTful dan Swagger: Amalan Terbaik untuk Membina API RESTful dalam Aplikasi Web Python (Bahagian 2) Dalam artikel sebelumnya, kami meneroka amalan terbaik untuk membina API RESTful menggunakan Flask-RESTful dan Swagger. Kami memperkenalkan asas rangka kerja Flask-RESTful dan menunjukkan cara menggunakan Swagger untuk membina dokumentasi untuk API RESTful. Buku

See all articles