Rumah pembangunan bahagian belakang Tutorial Python Cara menggunakan model pembelajaran mesin untuk ramalan data dalam FastAPI

Cara menggunakan model pembelajaran mesin untuk ramalan data dalam FastAPI

Jul 28, 2023 pm 12:45 PM
pembelajaran mesin fastapi Ramalan data

Cara menggunakan model pembelajaran mesin untuk ramalan data dalam FastAPI

Pengenalan:
Dengan pembangunan pembelajaran mesin, semakin banyak senario aplikasi memerlukan penyepaduan model pembelajaran mesin ke dalam sistem sebenar. FastAPI ialah rangka kerja web Python berprestasi tinggi berdasarkan rangka kerja pengaturcaraan tak segerak Ia menyediakan kaedah pembangunan API yang mudah dan mudah digunakan dan sangat sesuai untuk membina perkhidmatan ramalan pembelajaran mesin. Artikel ini akan memperkenalkan cara menggunakan model pembelajaran mesin untuk ramalan data dalam FastAPI dan memberikan contoh kod yang berkaitan.

Bahagian Pertama: Persediaan
Sebelum bermula, kita perlu menyiapkan beberapa persiapan.

  1. Pasang perpustakaan yang diperlukan
    Pertama, kita perlu memasang beberapa perpustakaan yang diperlukan. Anda boleh menggunakan arahan pip untuk memasang perpustakaan seperti FastAPI, uvicorn dan scikit-learn.
pip install fastapi
pip install uvicorn
pip install scikit-learn
Salin selepas log masuk
  1. Sediakan model pembelajaran mesin
    Seterusnya, kita perlu menyediakan model pembelajaran mesin terlatih. Dalam artikel ini, kita akan menggunakan model regresi linear mudah sebagai contoh. Model boleh dibina dan dilatih menggunakan perpustakaan scikit-learn.
from sklearn.linear_model import LinearRegression
import numpy as np

# 构建模型
model = LinearRegression()

# 准备训练数据
X_train = np.array(...).reshape(-1, 1)  # 输入特征
y_train = np.array(...)  # 目标变量

# 训练模型
model.fit(X_train, y_train)
Salin selepas log masuk

Bahagian 2: Membina aplikasi FastAPI
Selepas persiapan selesai, kita boleh mula membina aplikasi FastAPI.

  1. Import perpustakaan yang diperlukan
    Pertama, kami perlu mengimport beberapa perpustakaan yang diperlukan, termasuk FastAPI, uvicorn dan model yang baru kami latih.
from fastapi import FastAPI
from pydantic import BaseModel

# 导入模型
from sklearn.linear_model import LinearRegression
Salin selepas log masuk
  1. Tentukan model data input dan output
    Seterusnya, kita perlu menentukan model data input dan output. Dalam artikel ini, data input ialah nombor titik terapung, dan data output ialah nombor titik terapung.
class InputData(BaseModel):
    input_value: float

class OutputData(BaseModel):
    output_value: float
Salin selepas log masuk
  1. Buat contoh aplikasi FastAPI
    Kemudian, kita boleh mencipta contoh FastAPI.
app = FastAPI()
Salin selepas log masuk
  1. Tentukan laluan untuk ramalan data
    Seterusnya, kita boleh menentukan laluan untuk mengendalikan permintaan untuk ramalan data. Kami akan menggunakan kaedah POST untuk mengendalikan permintaan ramalan data dan menggunakan InputData sebagai data input permintaan. POST方法来处理数据预测请求,并将InputData作为请求的输入数据。
@app.post('/predict')
async def predict(input_data: InputData):
    # 调用模型进行预测
    input_value = input_data.input_value
    output_value = model.predict([[input_value]])

    # 构造输出数据
    output_data = OutputData(output_value=output_value[0])

    return output_data
Salin selepas log masuk

第三部分:运行FastAPI应用
在完成FastAPI应用的构建后,我们可以运行应用,并测试数据预测的功能。

  1. 运行FastAPI应用
    在命令行中运行以下命令,启动FastAPI应用。
uvicorn main:app --reload
Salin selepas log masuk
  1. 发起数据预测请求
    使用工具,如Postman,发送一个POST请求到http://localhost:8000/predict,并在请求体中传递一个input_value
  2. {
        "input_value": 5.0
    }
    Salin selepas log masuk
Bahagian 3: Menjalankan aplikasi FastAPI

Selepas menyiapkan pembinaan aplikasi FastAPI, kami boleh menjalankan aplikasi dan menguji fungsi ramalan data.

  1. Jalankan aplikasi FastAPI
    Jalankan arahan berikut dalam baris arahan untuk memulakan aplikasi FastAPI.
{
    "output_value": 10.0
}
Salin selepas log masuk


Mulakan permintaan ramalan data

Gunakan alat, seperti Posmen, untuk menghantar permintaan POST ke http://localhost:8000/predict dan sertakan ia dalam badan permintaan Lulus parameter input_value.

Sebagai contoh, menghantar badan permintaan berikut:

from fastapi import FastAPI
from pydantic import BaseModel
from sklearn.linear_model import LinearRegression
import numpy as np

# 创建模型和训练数据
model = LinearRegression()
X_train = np.array([1, 2, 3, 4, 5]).reshape(-1, 1)
y_train = np.array([2, 4, 6, 8, 10])
model.fit(X_train, y_train)

# 定义输入输出数据模型
class InputData(BaseModel):
    input_value: float

class OutputData(BaseModel):
    output_value: float

# 创建FastAPI应用实例
app = FastAPI()

# 定义数据预测的路由
@app.post('/predict')
async def predict(input_data: InputData):
    input_value = input_data.input_value
    output_value = model.predict([[input_value]])
    output_data = OutputData(output_value=output_value[0])
    return output_data
Salin selepas log masuk
🎜🎜Lihat keputusan ramalan🎜 sepatutnya menerima respons yang mengandungi keputusan ramalan. 🎜🎜rrreee🎜Kesimpulan: 🎜Artikel ini menerangkan cara menggunakan model pembelajaran mesin dalam FastAPI untuk ramalan data. Dengan mengikuti panduan dalam artikel ini, anda boleh dengan mudah menyepadukan model pembelajaran mesin anda sendiri ke dalam aplikasi FastAPI anda dan menyediakan perkhidmatan ramalan. 🎜🎜Kod contoh: 🎜rrreee🎜Saya berharap melalui pengenalan dan contoh kod artikel ini, anda boleh berjaya menggunakan model pembelajaran mesin untuk ramalan data dalam FastAPI. Saya doakan anda berjaya! 🎜

Atas ialah kandungan terperinci Cara menggunakan model pembelajaran mesin untuk ramalan data dalam FastAPI. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

AI Hentai Generator

AI Hentai Generator

Menjana ai hentai secara percuma.

Artikel Panas

R.E.P.O. Kristal tenaga dijelaskan dan apa yang mereka lakukan (kristal kuning)
1 bulan yang lalu By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Tetapan grafik terbaik
1 bulan yang lalu By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Cara Memperbaiki Audio Jika anda tidak dapat mendengar sesiapa
1 bulan yang lalu By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Arahan sembang dan cara menggunakannya
1 bulan yang lalu By 尊渡假赌尊渡假赌尊渡假赌

Alat panas

Notepad++7.3.1

Notepad++7.3.1

Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina

SublimeText3 versi Cina

Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1

Hantar Studio 13.0.1

Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6

Dreamweaver CS6

Alat pembangunan web visual

SublimeText3 versi Mac

SublimeText3 versi Mac

Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

15 alat anotasi imej percuma sumber terbuka disyorkan 15 alat anotasi imej percuma sumber terbuka disyorkan Mar 28, 2024 pm 01:21 PM

Anotasi imej ialah proses mengaitkan label atau maklumat deskriptif dengan imej untuk memberi makna dan penjelasan yang lebih mendalam kepada kandungan imej. Proses ini penting untuk pembelajaran mesin, yang membantu melatih model penglihatan untuk mengenal pasti elemen individu dalam imej dengan lebih tepat. Dengan menambahkan anotasi pada imej, komputer boleh memahami semantik dan konteks di sebalik imej, dengan itu meningkatkan keupayaan untuk memahami dan menganalisis kandungan imej. Anotasi imej mempunyai pelbagai aplikasi, meliputi banyak bidang, seperti penglihatan komputer, pemprosesan bahasa semula jadi dan model penglihatan graf Ia mempunyai pelbagai aplikasi, seperti membantu kenderaan dalam mengenal pasti halangan di jalan raya, dan membantu dalam proses. pengesanan dan diagnosis penyakit melalui pengecaman imej perubatan. Artikel ini terutamanya mengesyorkan beberapa alat anotasi imej sumber terbuka dan percuma yang lebih baik. 1.Makesen

Artikel ini akan membawa anda memahami SHAP: penjelasan model untuk pembelajaran mesin Artikel ini akan membawa anda memahami SHAP: penjelasan model untuk pembelajaran mesin Jun 01, 2024 am 10:58 AM

Dalam bidang pembelajaran mesin dan sains data, kebolehtafsiran model sentiasa menjadi tumpuan penyelidik dan pengamal. Dengan aplikasi meluas model yang kompleks seperti kaedah pembelajaran mendalam dan ensemble, memahami proses membuat keputusan model menjadi sangat penting. AI|XAI yang boleh dijelaskan membantu membina kepercayaan dan keyakinan dalam model pembelajaran mesin dengan meningkatkan ketelusan model. Meningkatkan ketelusan model boleh dicapai melalui kaedah seperti penggunaan meluas pelbagai model yang kompleks, serta proses membuat keputusan yang digunakan untuk menerangkan model. Kaedah ini termasuk analisis kepentingan ciri, anggaran selang ramalan model, algoritma kebolehtafsiran tempatan, dsb. Analisis kepentingan ciri boleh menerangkan proses membuat keputusan model dengan menilai tahap pengaruh model ke atas ciri input. Anggaran selang ramalan model

Kenal pasti overfitting dan underfitting melalui lengkung pembelajaran Kenal pasti overfitting dan underfitting melalui lengkung pembelajaran Apr 29, 2024 pm 06:50 PM

Artikel ini akan memperkenalkan cara mengenal pasti pemasangan lampau dan kekurangan dalam model pembelajaran mesin secara berkesan melalui keluk pembelajaran. Underfitting dan overfitting 1. Overfitting Jika model terlampau latihan pada data sehingga ia mempelajari bunyi daripadanya, maka model tersebut dikatakan overfitting. Model yang dipasang terlebih dahulu mempelajari setiap contoh dengan sempurna sehingga ia akan salah mengklasifikasikan contoh yang tidak kelihatan/baharu. Untuk model terlampau, kami akan mendapat skor set latihan yang sempurna/hampir sempurna dan set pengesahan/skor ujian yang teruk. Diubah suai sedikit: "Punca overfitting: Gunakan model yang kompleks untuk menyelesaikan masalah mudah dan mengekstrak bunyi daripada data. Kerana set data kecil sebagai set latihan mungkin tidak mewakili perwakilan yang betul bagi semua data. 2. Underfitting Heru

Telus! Analisis mendalam tentang prinsip model pembelajaran mesin utama! Telus! Analisis mendalam tentang prinsip model pembelajaran mesin utama! Apr 12, 2024 pm 05:55 PM

Dalam istilah orang awam, model pembelajaran mesin ialah fungsi matematik yang memetakan data input kepada output yang diramalkan. Secara lebih khusus, model pembelajaran mesin ialah fungsi matematik yang melaraskan parameter model dengan belajar daripada data latihan untuk meminimumkan ralat antara output yang diramalkan dan label sebenar. Terdapat banyak model dalam pembelajaran mesin, seperti model regresi logistik, model pepohon keputusan, model mesin vektor sokongan, dll. Setiap model mempunyai jenis data dan jenis masalah yang berkenaan. Pada masa yang sama, terdapat banyak persamaan antara model yang berbeza, atau terdapat laluan tersembunyi untuk evolusi model. Mengambil perceptron penyambung sebagai contoh, dengan meningkatkan bilangan lapisan tersembunyi perceptron, kita boleh mengubahnya menjadi rangkaian neural yang mendalam. Jika fungsi kernel ditambah pada perceptron, ia boleh ditukar menjadi SVM. yang ini

Evolusi kecerdasan buatan dalam penerokaan angkasa lepas dan kejuruteraan penempatan manusia Evolusi kecerdasan buatan dalam penerokaan angkasa lepas dan kejuruteraan penempatan manusia Apr 29, 2024 pm 03:25 PM

Pada tahun 1950-an, kecerdasan buatan (AI) dilahirkan. Ketika itulah penyelidik mendapati bahawa mesin boleh melakukan tugas seperti manusia, seperti berfikir. Kemudian, pada tahun 1960-an, Jabatan Pertahanan A.S. membiayai kecerdasan buatan dan menubuhkan makmal untuk pembangunan selanjutnya. Penyelidik sedang mencari aplikasi untuk kecerdasan buatan dalam banyak bidang, seperti penerokaan angkasa lepas dan kelangsungan hidup dalam persekitaran yang melampau. Penerokaan angkasa lepas ialah kajian tentang alam semesta, yang meliputi seluruh alam semesta di luar bumi. Angkasa lepas diklasifikasikan sebagai persekitaran yang melampau kerana keadaannya berbeza daripada di Bumi. Untuk terus hidup di angkasa, banyak faktor mesti dipertimbangkan dan langkah berjaga-jaga mesti diambil. Para saintis dan penyelidik percaya bahawa meneroka ruang dan memahami keadaan semasa segala-galanya boleh membantu memahami cara alam semesta berfungsi dan bersedia untuk menghadapi kemungkinan krisis alam sekitar

Melaksanakan Algoritma Pembelajaran Mesin dalam C++: Cabaran dan Penyelesaian Biasa Melaksanakan Algoritma Pembelajaran Mesin dalam C++: Cabaran dan Penyelesaian Biasa Jun 03, 2024 pm 01:25 PM

Cabaran biasa yang dihadapi oleh algoritma pembelajaran mesin dalam C++ termasuk pengurusan memori, multi-threading, pengoptimuman prestasi dan kebolehselenggaraan. Penyelesaian termasuk menggunakan penunjuk pintar, perpustakaan benang moden, arahan SIMD dan perpustakaan pihak ketiga, serta mengikuti garis panduan gaya pengekodan dan menggunakan alat automasi. Kes praktikal menunjukkan cara menggunakan perpustakaan Eigen untuk melaksanakan algoritma regresi linear, mengurus memori dengan berkesan dan menggunakan operasi matriks berprestasi tinggi.

AI yang boleh dijelaskan: Menerangkan model AI/ML yang kompleks AI yang boleh dijelaskan: Menerangkan model AI/ML yang kompleks Jun 03, 2024 pm 10:08 PM

Penterjemah |. Disemak oleh Li Rui |. Chonglou Model kecerdasan buatan (AI) dan pembelajaran mesin (ML) semakin kompleks hari ini, dan output yang dihasilkan oleh model ini adalah kotak hitam – tidak dapat dijelaskan kepada pihak berkepentingan. AI Boleh Dijelaskan (XAI) bertujuan untuk menyelesaikan masalah ini dengan membolehkan pihak berkepentingan memahami cara model ini berfungsi, memastikan mereka memahami cara model ini sebenarnya membuat keputusan, dan memastikan ketelusan dalam sistem AI, Amanah dan akauntabiliti untuk menyelesaikan masalah ini. Artikel ini meneroka pelbagai teknik kecerdasan buatan (XAI) yang boleh dijelaskan untuk menggambarkan prinsip asasnya. Beberapa sebab mengapa AI boleh dijelaskan adalah penting Kepercayaan dan ketelusan: Untuk sistem AI diterima secara meluas dan dipercayai, pengguna perlu memahami cara keputusan dibuat

Lima sekolah pembelajaran mesin yang anda tidak tahu Lima sekolah pembelajaran mesin yang anda tidak tahu Jun 05, 2024 pm 08:51 PM

Pembelajaran mesin ialah cabang penting kecerdasan buatan yang memberikan komputer keupayaan untuk belajar daripada data dan meningkatkan keupayaan mereka tanpa diprogramkan secara eksplisit. Pembelajaran mesin mempunyai pelbagai aplikasi dalam pelbagai bidang, daripada pengecaman imej dan pemprosesan bahasa semula jadi kepada sistem pengesyoran dan pengesanan penipuan, dan ia mengubah cara hidup kita. Terdapat banyak kaedah dan teori yang berbeza dalam bidang pembelajaran mesin, antaranya lima kaedah yang paling berpengaruh dipanggil "Lima Sekolah Pembelajaran Mesin". Lima sekolah utama ialah sekolah simbolik, sekolah sambungan, sekolah evolusi, sekolah Bayesian dan sekolah analogi. 1. Simbolisme, juga dikenali sebagai simbolisme, menekankan penggunaan simbol untuk penaakulan logik dan ekspresi pengetahuan. Aliran pemikiran ini percaya bahawa pembelajaran adalah proses penolakan terbalik, melalui sedia ada

See all articles