


PHP dan pembelajaran mesin: cara menjalankan analisis tingkah laku pengguna dan pengesyoran diperibadikan
PHP dan pembelajaran mesin: Cara menjalankan analisis tingkah laku pengguna dan cadangan yang diperibadikan
Abstrak:
Dengan perkembangan pesat Internet, pengguna melakukan lebih banyak aktiviti di Internet. Bagi perusahaan, memahami gelagat dan pilihan pengguna serta memberikan mereka cadangan yang diperibadikan telah menjadi kunci untuk memperoleh pengguna. Artikel ini akan memperkenalkan cara menggunakan PHP dan pembelajaran mesin untuk analisis tingkah laku pengguna dan pengesyoran diperibadikan, serta menunjukkannya melalui contoh kod.
1. Latar Belakang
Dalam beberapa tahun yang lalu, pengesyoran diperibadikan telah menjadi strategi penting untuk syarikat Internet. Pengesyoran yang diperibadikan boleh menyediakan produk atau perkhidmatan yang sepadan dengan pilihan pengguna berdasarkan data sejarah tingkah laku dan minat pengguna, dengan itu meningkatkan kepuasan dan kesetiaan pengguna. Sebagai teknologi algoritma yang berkuasa, pembelajaran mesin boleh mempelajari dan menemui corak daripada data besar-besaran, dan telah digunakan secara meluas dalam bidang pengesyoran diperibadikan.
2. Analisis Gelagat Pengguna
- Pengumpulan Data
Sebelum menjalankan analisis tingkah laku pengguna, kami perlu mengumpul dan menyimpan data tingkah laku pengguna. Data tingkah laku pengguna boleh diperoleh dengan memantau rekod penyemakan imbas pengguna, rekod pembelian, ulasan dan maklumat lain. Dalam PHP, anda boleh menggunakan MySQL atau pangkalan data lain untuk menyimpan data ini. - Prapemprosesan Data
Sebelum melakukan pembelajaran mesin, kita perlu pramemproses data untuk analisis dan pemodelan. Langkah prapemprosesan termasuk pembersihan data, transformasi data dan pemilihan ciri. PHP menyediakan pemprosesan rentetan yang berkuasa dan fungsi pemprosesan data, yang boleh memudahkan prapemprosesan data. - Pengeluaran Ciri
Dalam analisis gelagat pengguna, kami perlu mengekstrak ciri berguna daripada data gelagat pengguna untuk menerangkan gelagat dan minat pengguna. Seperti masa menyemak imbas, kekerapan pembelian, klik, dsb. Dalam PHP, ciri ini boleh diekstrak melalui pemprosesan rentetan dan fungsi analisis.
3. Pengesyoran diperibadikan
- Pengesyoran berasaskan kandungan
Pengesyoran berasaskan kandungan mengesyorkan kandungan yang serupa kepada pengguna berdasarkan tingkah laku dan minat sejarah mereka. Ini boleh dicapai melalui analisis teks dan pengiraan persamaan. Berikut ialah kod sampel:
<?php // 输入用户喜欢的物品列表 $user_items = array("电影1", "电影2", "音乐1", "音乐2"); // 所有物品的特征 $all_items = array( "电影1" => "喜剧", "电影2" => "动作", "电影3" => "剧情", "音乐1" => "流行", "音乐2" => "摇滚", "音乐3" => "古典" ); // 计算相似度 $similar_items = array(); foreach ($all_items as $item => $feature) { $similarity = similarity($user_items, $feature); $similar_items[$item] = $similarity; } // 按相似度降序排序 arsort($similar_items); // 推荐前n个物品 $recommend_items = array_slice($similar_items, 0, 3); // 输出推荐结果 foreach ($recommend_items as $item => $similarity) { echo $item . " (相似度:" . $similarity . ")" . "<br>"; } // 计算相似度函数 function similarity($user_items, $feature) { $similarity = 0; foreach ($user_items as $user_item) { if ($feature == $all_items[$user_item]) { $similarity++; } } return $similarity; } ?>
- Pengesyoran penapisan kolaboratif
Pengesyoran penapisan kolaboratif adalah untuk mengesyorkan item yang pengguna lain suka kepada pengguna semasa berdasarkan persamaan antara pengguna dan item tersebut. Ini boleh dicapai dengan mengira persamaan minat antara pengguna. Berikut ialah contoh kod:
<?php // 用户对物品的评分矩阵 $ratings = array( "用户1" => array("电影1" => 5, "电影2" => 4, "音乐1" => 3), "用户2" => array("电影1" => 2, "电影3" => 4, "音乐2" => 5), "用户3" => array("音乐1" => 4, "音乐2" => 3, "音乐3" => 2) ); // 计算用户之间的相似度 $user_similarity = array(); foreach ($ratings as $user1 => $items1) { foreach ($ratings as $user2 => $items2) { if ($user1 != $user2) { $similarity = similarity($items1, $items2); $user_similarity[$user1][$user2] = $similarity; } } } // 按相似度降序排序 foreach ($user_similarity as $user => $similarity) { arsort($similarity); $user_similarity[$user] = $similarity; } // 推荐前n个物品 $recommend_items = array(); foreach ($user_similarity as $user => $similarity) { foreach ($similarity as $similarity_user => $similarity_value) { foreach ($ratings[$similarity_user] as $item => $rating) { if (!isset($ratings[$user][$item])) { $recommend_items[$item] += $rating * $similarity_value; } } } } // 按推荐值降序排序 arsort($recommend_items); // 输出推荐结果 foreach ($recommend_items as $item => $recommend_value) { echo $item . " (推荐值:" . $recommend_value . ")" . "<br>"; } // 计算相似度函数 function similarity($items1, $items2) { $similarity = 0; foreach ($items1 as $item => $score1) { if (isset($items2[$item])) { $score2 = $items2[$item]; $similarity += $score1 * $score2; } } return $similarity; } ?>
Kesimpulan:
Artikel ini memperkenalkan cara menggunakan PHP dan pembelajaran mesin untuk analisis tingkah laku pengguna dan pengesyoran diperibadikan. Dengan mengumpul data tingkah laku pengguna, pramemproses data, mengekstrak ciri berguna dan menggunakan algoritma pengesyoran berdasarkan kandungan dan penapisan kolaboratif, pengesyoran diperibadikan boleh diberikan kepada pengguna. Kami berharap artikel ini akan membantu dalam menjalankan penyelidikan dan pembangunan tentang analisis tingkah laku pengguna dan pengesyoran yang diperibadikan.
Rujukan:
- Zhang Moumou PHP dan pembelajaran mesin [M]. .
Atas ialah kandungan terperinci PHP dan pembelajaran mesin: cara menjalankan analisis tingkah laku pengguna dan pengesyoran diperibadikan. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas



PHP 8.4 membawa beberapa ciri baharu, peningkatan keselamatan dan peningkatan prestasi dengan jumlah penamatan dan penyingkiran ciri yang sihat. Panduan ini menerangkan cara memasang PHP 8.4 atau naik taraf kepada PHP 8.4 pada Ubuntu, Debian, atau terbitan mereka

Kod Visual Studio, juga dikenali sebagai Kod VS, ialah editor kod sumber percuma — atau persekitaran pembangunan bersepadu (IDE) — tersedia untuk semua sistem pengendalian utama. Dengan koleksi sambungan yang besar untuk banyak bahasa pengaturcaraan, Kod VS boleh menjadi c

Jika anda seorang pembangun PHP yang berpengalaman, anda mungkin merasakan bahawa anda telah berada di sana dan telah melakukannya. Anda telah membangunkan sejumlah besar aplikasi, menyahpenyahpepijat berjuta-juta baris kod dan mengubah suai sekumpulan skrip untuk mencapai op

Tutorial ini menunjukkan cara memproses dokumen XML dengan cekap menggunakan PHP. XML (bahasa markup extensible) adalah bahasa markup berasaskan teks yang serba boleh yang direka untuk pembacaan manusia dan parsing mesin. Ia biasanya digunakan untuk penyimpanan data

JWT adalah standard terbuka berdasarkan JSON, yang digunakan untuk menghantar maklumat secara selamat antara pihak, terutamanya untuk pengesahan identiti dan pertukaran maklumat. 1. JWT terdiri daripada tiga bahagian: header, muatan dan tandatangan. 2. Prinsip kerja JWT termasuk tiga langkah: menjana JWT, mengesahkan JWT dan muatan parsing. 3. Apabila menggunakan JWT untuk pengesahan di PHP, JWT boleh dijana dan disahkan, dan peranan pengguna dan maklumat kebenaran boleh dimasukkan dalam penggunaan lanjutan. 4. Kesilapan umum termasuk kegagalan pengesahan tandatangan, tamat tempoh, dan muatan besar. Kemahiran penyahpepijatan termasuk menggunakan alat debugging dan pembalakan. 5. Pengoptimuman prestasi dan amalan terbaik termasuk menggunakan algoritma tandatangan yang sesuai, menetapkan tempoh kesahihan dengan munasabah,

Rentetan adalah urutan aksara, termasuk huruf, nombor, dan simbol. Tutorial ini akan mempelajari cara mengira bilangan vokal dalam rentetan yang diberikan dalam PHP menggunakan kaedah yang berbeza. Vokal dalam bahasa Inggeris adalah a, e, i, o, u, dan mereka boleh menjadi huruf besar atau huruf kecil. Apa itu vokal? Vokal adalah watak abjad yang mewakili sebutan tertentu. Terdapat lima vokal dalam bahasa Inggeris, termasuk huruf besar dan huruf kecil: a, e, i, o, u Contoh 1 Input: String = "TutorialSpoint" Output: 6 menjelaskan Vokal dalam rentetan "TutorialSpoint" adalah u, o, i, a, o, i. Terdapat 6 yuan sebanyak 6

Mengikat statik (statik: :) Melaksanakan pengikatan statik lewat (LSB) dalam PHP, yang membolehkan kelas panggilan dirujuk dalam konteks statik dan bukannya menentukan kelas. 1) Proses parsing dilakukan pada masa runtime, 2) Cari kelas panggilan dalam hubungan warisan, 3) ia boleh membawa overhead prestasi.

Apakah kaedah sihir PHP? Kaedah sihir PHP termasuk: 1. \ _ \ _ Membina, digunakan untuk memulakan objek; 2. \ _ \ _ Destruct, digunakan untuk membersihkan sumber; 3. \ _ \ _ Call, mengendalikan panggilan kaedah yang tidak wujud; 4. \ _ \ _ Mendapatkan, melaksanakan akses atribut dinamik; 5. \ _ \ _ Set, melaksanakan tetapan atribut dinamik. Kaedah ini secara automatik dipanggil dalam situasi tertentu, meningkatkan fleksibiliti dan kecekapan kod.
