PHP dan pembelajaran mesin: Cara melakukan pengurangan dimensi data dan pengekstrakan ciri
Pengenalan:
Pembelajaran mesin memainkan peranan yang semakin penting dalam pembangunan teknologi hari ini. Memandangkan saiz data terus berkembang, pemprosesan dan menganalisis data besar menjadi sangat kritikal. Dalam pembelajaran mesin, pengurangan dimensi data dan pengekstrakan ciri ialah dua tugas yang sangat penting. Ia boleh membantu kami mengurangkan dimensi set data dan mengekstrak maklumat utama untuk latihan dan ramalan model yang lebih baik. Artikel ini akan memperkenalkan cara menggunakan PHP untuk pengurangan dimensi data dan pengekstrakan ciri, serta memberikan contoh kod yang sepadan.
1. Apakah pengurangan dimensi data dan pengekstrakan ciri?
Dalam pembelajaran mesin, pengurangan dimensi data dan pengekstrakan ciri ialah dua kaedah teknikal yang biasa digunakan. Pengurangan dimensi data merujuk kepada menukar data berdimensi tinggi kepada data berdimensi rendah sambil mengekalkan maklumat utama sebanyak mungkin. Pengurangan dimensi data boleh membantu kami mengurangkan dimensi set data, dengan itu mengurangkan kerumitan pengiraan dan menggambarkan data dengan lebih baik. Pengekstrakan ciri adalah untuk mengekstrak ciri yang paling representatif dan berpengaruh daripada data asal untuk latihan dan ramalan model. Melalui pengekstrakan ciri, kami boleh mengurangkan saiz set data dan meningkatkan kecekapan latihan dan ramalan model.
2. Gunakan PHP untuk pengurangan dimensi data dan pengekstrakan ciri
Dalam PHP, kami boleh menggunakan beberapa perpustakaan pembelajaran mesin untuk pengurangan dimensi data dan pengekstrakan ciri. Berikut menggunakan algoritma PCA sebagai contoh untuk memperkenalkan cara menggunakan PHP untuk pengurangan dimensi data dan pengekstrakan ciri.
composer require php-ai/php-ml
use PhpmlDatasetCsvDataset; use PhpmlPreprocessingImputer; use PhpmlPreprocessingStandardScaler; $dataset = new CsvDataset('data.csv', $numFeatures = null, $delimiter = ',', $skipHeader = true); $imputer = new Imputer(); $imputer->fit($dataset->getSamples()); $imputer->transform($dataset->getSamples()); $scaler = new StandardScaler(); $scaler->fit($dataset->getSamples()); $scaler->transform($dataset->getSamples());
use PhpmlDimensionalityReductionPCA; $pca = new PCA(2); $pca->fit($dataset->getSamples()); $pca->transform($dataset->getSamples());
use PhpmlFeatureExtractionStopWords; use PhpmlFeatureExtractionTokenCountVectorizer; use PhpmlFeatureExtractionTfIdfTransformer; $vectorizer = new TokenCountVectorizer(new StopWords('en')); $vectorizer->fit($samples); $vectorizer->transform($samples); $transformer = new TfIdfTransformer(); $transformer->fit($samples); $transformer->transform($samples);
Kesimpulan:
Pengurangan dimensi data dan pengekstrakan ciri memainkan peranan yang sangat penting dalam pembelajaran mesin, mereka boleh membantu kami mengurangkan dimensi data set, Ekstrak maklumat penting untuk latihan dan ramalan model yang lebih baik. Artikel ini memperkenalkan cara menggunakan PHP untuk pengurangan dimensi data dan pengekstrakan ciri serta memberikan contoh kod yang sepadan. Dengan mempelajari dan menggunakan teknologi ini, kami boleh memproses dan menganalisis set data yang besar dengan lebih baik serta meningkatkan kecekapan dan ketepatan pembelajaran mesin.
Atas ialah kandungan terperinci PHP dan pembelajaran mesin: cara melakukan pengurangan dimensi data dan pengekstrakan ciri. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!