


Optimumkan kelajuan akses tapak web Python dan gunakan teknologi pengoptimuman pangkalan data seperti pengindeksan, pembahagian jadual dan caching.
Optimumkan kelajuan akses tapak web Python, menggunakan teknologi pengoptimuman pangkalan data seperti pengindeksan, sub-jadual dan caching
Dengan perkembangan pesat Internet, semakin ramai orang mula menggunakan bahasa Python untuk pembangunan laman web. Walau bagaimanapun, dalam keadaan konkurensi yang tinggi, laman web Python sering menghadapi masalah kelajuan akses yang perlahan. Untuk menyelesaikan masalah ini, kami boleh menggunakan beberapa teknik pengoptimuman pangkalan data, seperti pengindeksan, pembahagian jadual dan caching, untuk meningkatkan kelajuan akses tapak web Python.
1. Penggunaan indeks
Indeks ialah cara teknikal yang penting dalam pengoptimuman pangkalan data Dengan mencipta indeks pada lajur tertentu dalam jadual pangkalan data, kecekapan carian data boleh dipertingkatkan. Dalam Python, indeks boleh dibuat dan digunakan dengan menggunakan rangka kerja ORM.
Kod contoh: Cipta indeks menggunakan rangka kerja ORM
from flask import Flask from flask_sqlalchemy import SQLAlchemy app = Flask(__name__) app.config['SQLALCHEMY_DATABASE_URI'] = 'mysql://username:password@host/db_name' db = SQLAlchemy(app) class User(db.Model): id = db.Column(db.Integer, primary_key=True) name = db.Column(db.String(50), index=True) age = db.Column(db.Integer) @app.route('/') def index(): users = User.query.filter_by(name='John').all() return render_template('index.html', users=users) if __name__ == '__main__': app.run()
Dalam kod di atas, kami menggunakan rangka kerja Flask dan pustaka SQLAlchemy untuk mencipta aplikasi web mudah. Indeks dicipta pada lajur nama model Pengguna, supaya apabila menyoal pengguna yang namanya John, pangkalan data akan menggunakan indeks untuk mencari dan meningkatkan kecekapan pertanyaan dengan cepat.
2. Teknologi pemisahan jadual
Apabila jumlah data dalam jadual pangkalan data adalah sangat besar, kelajuan pertanyaan mungkin menjadi sangat perlahan. Ini kerana pangkalan data perlu mengimbas keseluruhan jadual untuk mencari data yang memenuhi kriteria pertanyaan. Untuk menyelesaikan masalah ini, kita boleh menggunakan teknologi pemisahan jadual untuk membahagikan meja besar kepada berbilang jadual kecil.
Kod contoh: Menggunakan teknologi pemisahan jadual
from flask import Flask from flask_sqlalchemy import SQLAlchemy app = Flask(__name__) app.config['SQLALCHEMY_DATABASE_URI'] = 'mysql://username:password@host/db_name' db = SQLAlchemy(app) class User(db.Model): __tablename__ = 'user_1' id = db.Column(db.Integer, primary_key=True) name = db.Column(db.String(50)) age = db.Column(db.Integer) @app.route('/') def index(): users = User.query.filter_by(name='John').all() return render_template('index.html', users=users) if __name__ == '__main__': app.run()
Dalam kod di atas, kami menetapkan nama jadual model Pengguna kepada 'user_1', supaya data boleh dibahagikan kepada beberapa jadual kecil. Apabila membuat pertanyaan, memilih jadual yang sepadan untuk pertanyaan berdasarkan syarat boleh meningkatkan kelajuan pertanyaan dengan ketara.
3. Teknologi caching
Teknologi caching ialah satu lagi cara yang berkesan untuk meningkatkan kelajuan akses tapak web Python. Dalam Python, kita boleh menggunakan beberapa perpustakaan caching untuk melaksanakan fungsi caching, seperti Redis, Memcached, dll.
Kod Contoh: Menggunakan Redis Cache
from flask import Flask from flask_sqlalchemy import SQLAlchemy from flask_redis import FlaskRedis app = Flask(__name__) app.config['SQLALCHEMY_DATABASE_URI'] = 'mysql://username:password@host/db_name' app.config['REDIS_URL'] = 'redis://127.0.0.1:6379/0' db = SQLAlchemy(app) redis_store = FlaskRedis(app) class User(db.Model): __tablename__ = 'user' id = db.Column(db.Integer, primary_key=True) name = db.Column(db.String(50)) age = db.Column(db.Integer) @app.route('/') def index(): users = redis_store.get('users') if users is None: users = User.query.filter_by(name='John').all() users_str = json.dumps(users) redis_store.set('users', users_str) else: users = json.loads(users) return render_template('index.html', users=users) if __name__ == '__main__': app.run()
Dalam kod di atas, kami telah menggunakan perpustakaan Flask-Redis untuk melaksanakan cache Redis. Apabila menanyakan data pengguna, mula-mula cari data cache dalam Redis Jika data cache wujud, data cache akan dikembalikan secara langsung Jika data cache tidak wujud, pertanyaan akan ditanya daripada pangkalan data dan hasil pertanyaan disimpan dalam Redis. caching.
Dengan menggunakan teknologi pengoptimuman pangkalan data seperti pengindeksan, serpihan jadual dan caching, kelajuan capaian tapak web Python boleh dipertingkatkan dengan sangat baik. Walau bagaimanapun, perlu diingatkan bahawa setiap teknologi pengoptimuman mempunyai senario dan sekatan yang terpakai sendiri, dan perlu dipilih dan diselaraskan mengikut situasi sebenar. Pada masa yang sama, prestasi pangkalan data juga harus sentiasa dipantau dan dioptimumkan untuk memastikan operasi tapak web Python yang cekap.
Atas ialah kandungan terperinci Optimumkan kelajuan akses tapak web Python dan gunakan teknologi pengoptimuman pangkalan data seperti pengindeksan, pembahagian jadual dan caching.. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas



Petua untuk mengoptimumkan prestasi pertanyaan Hibernate termasuk: menggunakan pemuatan malas untuk menangguhkan pemuatan koleksi dan objek yang berkaitan untuk menggabungkan operasi kemas kini, memadam atau memasukkan menggunakan cache peringkat kedua untuk menyimpan objek yang sering ditanya dalam ingatan; , dapatkan semula entiti dan entiti yang berkaitan dengannya untuk mengelakkan mod pertanyaan SELECTN+1 untuk mendapatkan data besar dalam blok untuk meningkatkan prestasi pertanyaan tertentu;

Bagaimana untuk meningkatkan kelajuan akses laman web Python melalui pengoptimuman pangkalan data? Ringkasan Semasa membina tapak web Python, pangkalan data adalah komponen kritikal. Jika kelajuan capaian pangkalan data adalah perlahan, ia akan menjejaskan prestasi dan pengalaman pengguna tapak web secara langsung. Artikel ini akan membincangkan beberapa cara untuk mengoptimumkan pangkalan data anda untuk meningkatkan kelajuan akses tapak web Python anda, bersama-sama dengan beberapa kod sampel. Pengenalan Bagi kebanyakan laman web Python, pangkalan data adalah bahagian penting dalam menyimpan dan mendapatkan semula data. Jika tidak dioptimumkan, pangkalan data boleh menjadi hambatan prestasi. Buku

Dalam pangkalan data MySQL, pengindeksan adalah cara yang sangat penting untuk pengoptimuman prestasi. Apabila jumlah data dalam jadual meningkat, indeks yang tidak sesuai boleh menyebabkan pertanyaan menjadi perlahan atau malah menyebabkan ranap pangkalan data. Untuk meningkatkan prestasi pangkalan data, indeks perlu digunakan secara rasional apabila mereka bentuk struktur jadual dan pernyataan pertanyaan. Indeks komposit ialah teknologi pengindeksan yang lebih maju yang meningkatkan kecekapan pertanyaan dengan menggabungkan berbilang medan sebagai indeks. Dalam artikel ini, kami akan memperincikan cara meningkatkan prestasi MySQL dengan menggunakan indeks komposit. Apakah komposit indeks komposit

SpringBoot ialah rangka kerja Java popular yang terkenal dengan kemudahan penggunaan dan pembangunan pesatnya. Walau bagaimanapun, apabila kerumitan aplikasi meningkat, isu prestasi boleh menjadi halangan. Untuk membantu anda mencipta aplikasi springBoot sepantas angin, artikel ini akan berkongsi beberapa petua pengoptimuman prestasi praktikal. Optimumkan masa permulaan Masa permulaan aplikasi adalah salah satu faktor utama pengalaman pengguna. SpringBoot menyediakan beberapa cara untuk mengoptimumkan masa permulaan, seperti menggunakan caching, mengurangkan output log dan mengoptimumkan pengimbasan laluan kelas. Anda boleh melakukan ini dengan menetapkan spring.main.lazy-initialization dalam fail application.properties

1. Pengoptimuman kod untuk mengelakkan penggunaan terlalu banyak anotasi keselamatan: Dalam Pengawal dan Perkhidmatan, cuba kurangkan penggunaan @PreAuthorize dan @PostAuthorize dan anotasi lain ini akan meningkatkan masa pelaksanaan kod. Optimumkan pernyataan pertanyaan: Apabila menggunakan springDataJPA, mengoptimumkan pernyataan pertanyaan boleh mengurangkan masa pertanyaan pangkalan data, dengan itu meningkatkan prestasi sistem. Caching maklumat keselamatan: Caching beberapa maklumat keselamatan yang biasa digunakan boleh mengurangkan bilangan capaian pangkalan data dan meningkatkan kelajuan tindak balas sistem. 2. Gunakan indeks untuk pengoptimuman pangkalan data: Mencipta indeks pada jadual yang sering ditanya boleh meningkatkan kelajuan pertanyaan pangkalan data dengan ketara. Bersihkan log dan meja sementara dengan kerap: Bersihkan log dan meja sementara dengan kerap

Dari perspektif teknikal, mengapa Oracle boleh mengalahkan MySQL? Dalam beberapa tahun kebelakangan ini, sistem pengurusan pangkalan data (DBMS) telah memainkan peranan penting dalam penyimpanan dan pemprosesan data. Oracle dan MySQL, dua DBMS yang popular, sentiasa menarik perhatian ramai. Walau bagaimanapun, dari perspektif teknikal, Oracle lebih berkuasa daripada MySQL dalam beberapa aspek, jadi Oracle mampu mengalahkan MySQL. Pertama, Oracle cemerlang dalam mengendalikan data berskala besar. Oracl

Dengan perkembangan berterusan teknologi komputer dan pertumbuhan berterusan skala data, pangkalan data telah menjadi teknologi penting. Walau bagaimanapun, terdapat beberapa masalah biasa yang dihadapi apabila menggunakan pangkalan data dalam sistem Linux Artikel ini akan memperkenalkan beberapa masalah pangkalan data biasa dalam sistem Linux dan penyelesaiannya. Masalah sambungan pangkalan data Apabila menggunakan pangkalan data, masalah seperti kegagalan sambungan atau tamat masa sambungan kadangkala berlaku Masalah ini mungkin disebabkan oleh ralat konfigurasi pangkalan data atau hak akses yang tidak mencukupi. Penyelesaian: Semak fail konfigurasi pangkalan data untuk memastikan

Cara Mengoptimumkan Pertanyaan Pangkalan Data untuk Pemalam WordPress Tersuai Ringkasan: Untuk pembangun membangunkan pemalam tersuai menggunakan WordPress, adalah penting untuk memahami cara mengoptimumkan pertanyaan pangkalan data. Artikel ini akan memperkenalkan beberapa teknik pengoptimuman untuk membantu pembangun meningkatkan prestasi pemalam tersuai. Pengenalan: Apabila tapak WordPress berkembang dan trafik meningkat, prestasi pertanyaan pangkalan data menjadi semakin kritikal. Mengoptimumkan pertanyaan pangkalan data boleh meningkatkan kelajuan dan masa tindak balas tapak web anda dengan ketara, memberikan pengalaman pengguna yang lebih baik. Artikel ini
