Petua |. Ringkaskan beberapa algoritma pengecaman muka Python yang mudah dan mudah digunakan

Lepaskan: 2023-08-09 17:21:03
ke hadapan
923 orang telah melayarinya


Hari ini saya akan meringkaskan untuk anda beberapa algoritma pengecaman mukayang mudah dan mudah digunakan. Pengecaman muka adalah teknologi yang agak biasa dalam penglihatan komputer Dalam kehidupan, senario pengecaman muka yang paling kita terdedah ialah Kehadiran muka Saya juga pernah menulis artikel khas tentang projek kehadiran muka sebelum ini, untuk mereka yang berminat Anda boleh tengok. Tugas teras algoritma

pengecaman muka adalah untuk mengenal pasti lokasi wajah daripada gambar. Terdapat banyak algoritma pengecaman yang berbeza, dan saya akan memperkenalkannya satu persatu di bawah.

Petua |. Ringkaskan beberapa algoritma pengecaman muka Python yang mudah dan mudah digunakan

1. Pengesanan Muka HoG

Algoritma ini menggunakan algoritma pembelajaran mesin tradisional untuk mengenal pasti wajah. Ciri algoritma pembelajaran mesin tradisional ialah membina ciri secara manual, dan kemudian menghantar ciri yang dibina kepada latihan model.

Algoritma ini menggunakan HoGEkstrak orang dalam gambar Untuk ciri muka, gunakan SVMalgoritma untuk pengelasan . HoG提取图片中人脸特征,用SVM算法进行分类。

HoG(Histogram of Oriented Gradient, 方向梯度直方图)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子,通过计算和统计图像局部区域的梯度方向直方图来构成特征。

dlib库中有该算法的实现,下面我们看看核心代码

import dlib
# 加载预训练的 HoG 人脸检测器
hog_face_detector = dlib.get_frontal_face_detector()

# 对图片进行人脸检测
results = hog_face_detector(imgRGB, 0)

for bbox in results:
  x1 = bbox.left()  # 人脸左上角x坐标
  y1 = bbox.top()  # 人脸左上角y坐标
  x2 = bbox.right()  # 人脸右下角x坐标
  y2 = bbox.bottom()  # 人脸右下角y坐标
Salin selepas log masuk

results 存放一张图中检测出来的多个人脸, 遍历results

HoG(Histogram of Oriented Gradient, Ciri histogram kecerunan arah ialah deskriptor ciri yang digunakan untuk pengesanan objek dalam penglihatan komputer dan pemprosesan imej. Ciri dibentuk dengan mengira dan mengira histogram arah kecerunan bagi kawasan setempat imej.

dlib library mempunyai Implementasi algoritma ini, mari kita lihat kod teras
import cv2

# 加载预训练的 SSD 模型
opencv_dnn_model = cv2.dnn.readNetFromCaffe(
      prototxt="models/deploy.prototxt"
      , caffeModel="models/res10_300x300_ssd_iter_140000_fp16.caffemodel")

# 原始图片 blob 处理
preprocessed_image = cv2.dnn.blobFromImage(image, scalefactor=1.0, size=(300, 300), mean=(104.0, 117.0, 123.0), swapRB=False, crop=False)
 
# blob 图片送入模型
opencv_dnn_model.setInput(preprocessed_image)

# 模型推理,进行人脸检测
results = opencv_dnn_model.forward()  

# 遍历人脸
for face in results[0][0]:
  # 置信度
  face_confidence = face[2]
  
  # 人脸边框的左上角和右下角坐标点
  x1 = int(bbox[0] * image_width)
  y1 = int(bbox[1] * image_height)
  x2 = int(bbox[2] * image_width)
  y2 = int(bbox[3] * image_height)
Salin selepas log masuk
Salin selepas log masuk
Petua |. Ringkaskan beberapa algoritma pengecaman muka Python yang mudah dan mudah digunakanhasil< /code> Simpan berbilang muka yang dikesan dalam gambar, lintasi<code style="font-size: 14px;word-wrap: break-word;padding: 2px 4px;border-radius: 4px;margin: 0 2px;background -color : rgba(27,31,35,.05);font-family: Operator Mono, Consolas, Monaco, Menlo, monospace;word-break: break-all;color: rgb(239, 112, 96);" >hasil Anda boleh mendapatkan bingkai segi empat tepat setiap muka.

Contoh pengesanan adalah seperti berikut:

🎜🎜🎜🎜Bingkai hijau ialah muka yang dikesan oleh algoritma. 🎜

HoG 人脸检测由于采用传统机器学习算法,所以性能比较高,在CPU上运行也可以比较快。但它无法检测小于 80*80 的人脸,对旋转人脸、非正面人脸,识别效果也不太好。

2. 深度学习人脸检测

虽然传统机器学习算法检测更快,但准确度却有待提升。基于深度学习的人脸检测算法往往会更加准确。

这里介绍的是使用残差网络ResNet-10通过网络(模型)在图像的单通道( Single Shot Detector,SSD)中检测多个人脸。简称SSD算法。

首先,需要将原始图片进行blob预处理,然后直接送入模型,进行检测

cv2库提供了该算法的实现,核心代码如下:

import cv2

# 加载预训练的 SSD 模型
opencv_dnn_model = cv2.dnn.readNetFromCaffe(
      prototxt="models/deploy.prototxt"
      , caffeModel="models/res10_300x300_ssd_iter_140000_fp16.caffemodel")

# 原始图片 blob 处理
preprocessed_image = cv2.dnn.blobFromImage(image, scalefactor=1.0, size=(300, 300), mean=(104.0, 117.0, 123.0), swapRB=False, crop=False)
 
# blob 图片送入模型
opencv_dnn_model.setInput(preprocessed_image)

# 模型推理,进行人脸检测
results = opencv_dnn_model.forward()  

# 遍历人脸
for face in results[0][0]:
  # 置信度
  face_confidence = face[2]
  
  # 人脸边框的左上角和右下角坐标点
  x1 = int(bbox[0] * image_width)
  y1 = int(bbox[1] * image_height)
  x2 = int(bbox[2] * image_width)
  y2 = int(bbox[3] * image_height)
Salin selepas log masuk
Salin selepas log masuk

results[0][0]存放了检测出来的多张人脸,每张人脸用数组表达,数组的第3位存放置信度,可以通过阈值过滤不置信的人脸。数组的第4~7位存放检测出来的人脸矩形框左上角和右下角的坐标。

相比于 HoG 人脸检测,SSD 算法对遮挡、非正面人脸也能检测出来。

Petua |. Ringkaskan beberapa algoritma pengecaman muka Python yang mudah dan mudah digunakan

3. 卷积神经网络人脸检测

卷积就不多说了,了解计算机视觉的都知道。

dlib库提供了卷积神经网络人脸检测算法的实现,用法跟之前类似

import dlib

# 记载预训练模型
cnn_face_detector = dlib.cnn_face_detection_model_v1("models/mmod_human_face_detector.dat")

# 人脸检测
results = cnn_face_detector(imgRGB, 0)

# 遍历每张人脸
for face in results:
  # 人脸边框      
  bbox = face.rect
  
  # 人脸边框的左上角和右下角坐标点
  x1 = int(bbox.left() * (width/new_width))
  y1 = int(bbox.top() * (height/new_height))
  x2 = int(bbox.right() * (width/new_width))
  y2 = int(bbox.bottom() * (height/new_height))
Salin selepas log masuk

results的解析跟上面类似,这里就不在赘述了。

采用卷积神经网络的人脸检测算法优势很明显,比前两个更准确和健壮,并且还能够检测遮挡下的人脸。

Petua |. Ringkaskan beberapa algoritma pengecaman muka Python yang mudah dan mudah digunakan

即便非正面、且光线暗的图片,也能很好检测出来

Petua |. Ringkaskan beberapa algoritma pengecaman muka Python yang mudah dan mudah digunakan

但该算法相应的缺点也很明显,检测过程所花费的时间非常长,无法在 CPU 上实时运行。

4. BlazeFace

上面的算法要么精度高、速度慢,要么速度快,精度低。那有没有一种检测算法,既有高准确率,又有高性能呢?

答案是肯定的,BlazeFace是一种非常轻量级且高度准确的人脸检测器,号称亚毫秒级的人脸检测器。其灵感来自 Single Shot MultiBox Detector (SSD)MobileNetv2

Mediapipe库提供了该算法的实现,核心代码如下:

import mediapipe as mp

# 画图工具
mp_drawing = mp.solutions.drawing_utils

# 初始化人脸检测模型
mp_face_detection = mp.solutions.face_detection
mp_face_detector = mp_face_detection.FaceDetection(min_detection_confidence=0.4)

results = mp_face_detector.process(imgRGB)

if results.detections:

  # 变脸检测出的人脸
  for face_no, face in enumerate(results.detections):

      # 画人脸关键点
      mp_drawing.draw_detection(image=output_image, detection=face, keypoint_drawing_spec=mp_drawing.DrawingSpec(color=(0,255,0),thickness=-1, circle_radius=image_width//115), bbox_drawing_spec=mp_drawing.DrawingSpec(color=(0,255,0),thickness=image_width//180))

      # 画人脸框
      face_bbox = face.location_data.relative_bounding_box
      x1 = int(face_bbox.xmin*image_width)
      y1 = int(face_bbox.ymin*image_height)

      cv2.rectangle(output_image, pt1=(x1, y1-image_width//20), pt2=(x1+image_width//16, y1), color=(0, 255, 0), thickness=-1)
Salin selepas log masuk

效果如下:

Petua |. Ringkaskan beberapa algoritma pengecaman muka Python yang mudah dan mudah digunakan

Anda boleh lihat, BlazeFace Algoritma ini bukan sahaja dapat mengesan muka, tetapi juga mengenal pasti 6 mata utama muka (mata, hidung, telinga, mulut). BlazeFace算法不光能检测人脸,还能识别出人脸6个关键点(眼睛、鼻子、耳朵、嘴)。

上面就是今天分享的4个人脸识别的算法。

识别出人脸,我们再做人脸考勤就非常简单了,把人脸Embedding

Di atas ialah 4 algoritma pengecaman muka yang dikongsikan hari ini.
Selepas mengenali wajah, sangat mudah untuk kita melakukan semakan kehadiran muka Letak mukaMembenamkan ke dalam vektor, cuma kira jarak antara vektor. 🎜🎜🎜

Atas ialah kandungan terperinci Petua |. Ringkaskan beberapa algoritma pengecaman muka Python yang mudah dan mudah digunakan. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Label berkaitan:
sumber:Python当打之年
Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn
Tutorial Popular
Lagi>
Muat turun terkini
Lagi>
kesan web
Kod sumber laman web
Bahan laman web
Templat hujung hadapan