


Golang melaksanakan pengesanan muka dan pengekstrakan ciri muka dalam imej
Kaedah Golang untuk melaksanakan pengesanan muka dan pengekstrakan ciri muka dalam imej
Pengesanan muka dan pengekstrakan ciri muka adalah salah satu tugas penting dalam bidang penglihatan komputer. Sebagai bahasa pengaturcaraan yang cekap dan boleh dipercayai, Golang menyediakan banyak perpustakaan pemprosesan imej dan algoritma yang boleh mencapai pengesanan muka dan pengekstrakan ciri muka. Artikel ini akan memperkenalkan cara menggunakan Golang untuk mencapai dua tugasan ini, dengan contoh kod.
1. Pengesanan muka
Pengesanan muka merujuk kepada proses mengesan dan mengenal pasti wajah dengan tepat daripada imej atau video. Golang menyediakan opencv perpustakaan pemprosesan imej yang berkuasa, yang boleh digunakan untuk pengesanan muka. Berikut ialah contoh kod mudah:
package main import ( "fmt" "gocv.io/x/gocv" ) func main() { // 加载预训练的人脸检测模型 classifier := gocv.NewCascadeClassifier() defer classifier.Close() if !classifier.Load("haarcascade_frontalface_default.xml") { fmt.Println("无法加载人脸检测模型") return } // 读取图像 img := gocv.IMRead("image.jpg", gocv.IMReadColor) defer img.Close() if img.Empty() { fmt.Println("无法加载图像") return } // 将图像转为灰度图像 gray := gocv.NewMat() defer gray.Close() gocv.CvtColor(img, &gray, gocv.ColorBGRToGray) // 在灰度图像上进行人脸检测 faces := classifier.DetectMultiScale(gray) fmt.Println("检测到的人脸数量:", len(faces)) // 在原图像上标记人脸 for _, face := range faces { gocv.Rectangle(&img, face, color.RGBA{255, 0, 0, 0}, 2) } // 展示图像 window := gocv.NewWindow("人脸检测") defer window.Close() window.IMShow(img) window.WaitKey(0) }
Dalam kod di atas, mula-mula gunakan fungsi NewCascadeClassifier()
untuk memuatkan model pengesanan muka yang telah terlatih, dan kemudian gunakan IMRead()</ kod> Fungsi kod> membaca imej dan menggunakan fungsi <code>CvtColor()
untuk menukar imej kepada imej skala kelabu. Kemudian panggil fungsi DetectMultiScale()
untuk melaksanakan pengesanan muka pada imej skala kelabu dan mengembalikan tatasusunan yang mengandungi maklumat kedudukan muka yang dikesan. Akhir sekali, gunakan fungsi Rectangle()
untuk menandakan kedudukan muka yang dikesan pada imej asal dan gunakan fungsi IMShow()
untuk memaparkan imej. NewCascadeClassifier()
函数加载一个预训练的人脸检测模型,然后使用IMRead()
函数读取图像,使用CvtColor()
函数将图像转为灰度图像。接着调用DetectMultiScale()
函数对灰度图像进行人脸检测,返回一个包含检测到的人脸位置信息的数组。最后,使用Rectangle()
函数在原图像上标记出检测到的人脸位置,并使用IMShow()
函数展示图像。
二、面部特征提取
面部特征提取是指从人脸图像中提取出与人脸特征相关的一些关键点或描述符的过程。Golang提供了多种面部特征提取的算法和库,如dlib、OpenFace等。下面是一个使用dlib库进行面部特征提取的示例代码:
package main import ( "fmt" "github.com/Kagami/go-face" "gocv.io/x/gocv" ) func main() { // 加载预训练的人脸特征提取模型 rec, err := face.NewRecognizer("models") if err != nil { fmt.Println("无法加载人脸特征提取模型:", err) return } defer rec.Close() // 读取图像 img := gocv.IMRead("image.jpg", gocv.IMReadGrayScale) defer img.Close() if img.Empty() { fmt.Println("无法加载图像") return } // 提取人脸特征 faces, err := rec.Recognize(img) if err != nil { fmt.Println("人脸特征提取失败:", err) return } fmt.Println("检测到的人脸数量:", len(faces)) // 在原图像上标记人脸 for _, face := range faces { gocv.Rectangle(&img, face.Rectangle, color.RGBA{255, 0, 0, 0}, 2) } // 展示图像 window := gocv.NewWindow("人脸特征提取") defer window.Close() window.IMShow(img) window.WaitKey(0) }
在上面的代码中,首先使用NewRecognizer()
函数加载一个预训练的人脸特征提取模型(需要事先下载并解压到models
目录下),然后使用IMRead()
函数读取图像,将其转为灰度图像。接着调用Recognize()
函数提取出图像中的人脸特征,并返回一个包含检测到的人脸信息的数组。最后,可以使用Rectangle()
函数在原图像上标记出检测到的人脸位置,并使用IMShow()
rrreee
Dalam kod di atas, mula-mula gunakan fungsiNewRecognizer()
untuk memuatkan model pengekstrakan ciri muka yang telah terlatih (perlu dimuat turun terlebih dahulu dan nyahzipnya ke direktori models
), kemudian gunakan fungsi IMRead()
untuk membaca imej dan menukarnya kepada imej skala kelabu. Kemudian panggil fungsi Recognize()
untuk mengekstrak ciri muka dalam imej dan mengembalikan tatasusunan yang mengandungi maklumat wajah yang dikesan. Akhir sekali, anda boleh menggunakan fungsi Rectangle()
untuk menandakan kedudukan muka yang dikesan pada imej asal dan menggunakan fungsi IMShow()
untuk memaparkan imej. 🎜🎜Ringkasan🎜🎜Artikel ini memperkenalkan cara menggunakan Golang untuk melaksanakan pengesanan muka dan pengekstrakan ciri muka dalam imej dan melampirkan contoh kod yang sepadan. Melalui kaedah ini, kami boleh mengesan dan menganalisis wajah dalam imej dengan mudah, meletakkan asas untuk tugasan seterusnya seperti pengecaman muka dan analisis ekspresi. Diharapkan para pembaca boleh menggunakan kaedah ini secara fleksibel mengikut keperluan mereka sendiri untuk meluaskan lagi skop aplikasi pemprosesan imej. 🎜Atas ialah kandungan terperinci Golang melaksanakan pengesanan muka dan pengekstrakan ciri muka dalam imej. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas

Membaca dan menulis fail dengan selamat dalam Go adalah penting. Garis panduan termasuk: Menyemak kebenaran fail Menutup fail menggunakan tangguh Mengesahkan laluan fail Menggunakan tamat masa konteks Mengikuti garis panduan ini memastikan keselamatan data anda dan keteguhan aplikasi anda.

Bagaimana untuk mengkonfigurasi pengumpulan sambungan untuk sambungan pangkalan data Go? Gunakan jenis DB dalam pakej pangkalan data/sql untuk membuat sambungan pangkalan data untuk mengawal bilangan maksimum sambungan serentak;

Data JSON boleh disimpan ke dalam pangkalan data MySQL dengan menggunakan perpustakaan gjson atau fungsi json.Unmarshal. Pustaka gjson menyediakan kaedah kemudahan untuk menghuraikan medan JSON dan fungsi json.Unmarshal memerlukan penuding jenis sasaran kepada data JSON unmarshal. Kedua-dua kaedah memerlukan penyediaan pernyataan SQL dan melaksanakan operasi sisipan untuk mengekalkan data ke dalam pangkalan data.

Perbezaan antara rangka kerja GoLang dan rangka kerja Go ditunjukkan dalam seni bina dalaman dan ciri luaran. Rangka kerja GoLang adalah berdasarkan perpustakaan standard Go dan meluaskan fungsinya, manakala rangka kerja Go terdiri daripada perpustakaan bebas untuk mencapai tujuan tertentu. Rangka kerja GoLang lebih fleksibel dan rangka kerja Go lebih mudah digunakan. Rangka kerja GoLang mempunyai sedikit kelebihan dalam prestasi dan rangka kerja Go lebih berskala. Kes: gin-gonic (rangka Go) digunakan untuk membina REST API, manakala Echo (rangka kerja GoLang) digunakan untuk membina aplikasi web.

Fungsi FindStringSubmatch mencari subrentetan pertama dipadankan dengan ungkapan biasa: fungsi mengembalikan hirisan yang mengandungi subrentetan yang sepadan, dengan elemen pertama ialah keseluruhan rentetan dipadankan dan elemen berikutnya ialah subrentetan individu. Contoh kod: regexp.FindStringSubmatch(teks,corak) mengembalikan sekeping subrentetan yang sepadan. Kes praktikal: Ia boleh digunakan untuk memadankan nama domain dalam alamat e-mel, contohnya: e-mel:="user@example.com", pattern:=@([^\s]+)$ untuk mendapatkan padanan nama domain [1].

Laluan Pembelajaran Backend: Perjalanan Eksplorasi dari Front-End ke Back-End sebagai pemula back-end yang berubah dari pembangunan front-end, anda sudah mempunyai asas Nodejs, ...

Menggunakan zon waktu yang dipratentukan dalam Go termasuk langkah berikut: Import pakej "masa". Muatkan zon waktu tertentu melalui fungsi LoadLocation. Gunakan zon waktu yang dimuatkan dalam operasi seperti mencipta objek Masa, menghuraikan rentetan masa dan melaksanakan penukaran tarikh dan masa. Bandingkan tarikh menggunakan zon waktu yang berbeza untuk menggambarkan aplikasi ciri zon waktu yang telah ditetapkan.

Soalan Lazim pembangunan rangka kerja Go: Pemilihan rangka kerja: Bergantung pada keperluan aplikasi dan pilihan pembangun, seperti Gin (API), Echo (boleh berskala), Beego (ORM), Iris (prestasi). Pemasangan dan penggunaan: Gunakan arahan gomod untuk memasang, mengimport rangka kerja dan menggunakannya. Interaksi pangkalan data: Gunakan perpustakaan ORM, seperti gorm, untuk mewujudkan sambungan dan operasi pangkalan data. Pengesahan dan kebenaran: Gunakan pengurusan sesi dan perisian tengah pengesahan seperti gin-contrib/sesi. Kes praktikal: Gunakan rangka kerja Gin untuk membina API blog ringkas yang menyediakan POST, GET dan fungsi lain.
