


Bagaimana untuk menambah bunyi pada gambar menggunakan Python
Cara menggunakan Python untuk menambah bunyi pada gambar
Pengenalan:
Dengan perkembangan teknologi, pemprosesan imej digital telah menjadi kaedah pemprosesan imej yang biasa. Antaranya, menambah hingar pada imej merupakan langkah penting dalam pemprosesan imej Dengan menambah hingar, realisme dan kerumitan imej dapat dipertingkatkan. Artikel ini akan memperkenalkan cara menggunakan Python untuk menambah hingar pada imej dan memberikan contoh kod yang berkaitan.
1. Memahami hingar imej
Bunyi imej merujuk kepada gangguan rawak yang menjejaskan kualiti dan kejelasan imej. Bunyi imej biasa termasuk hingar Gaussian, hingar garam dan lada, hingar Poisson, dsb. Antaranya, hingar Gaussian adalah jenis hingar yang paling biasa dan paling biasa digunakan Ia adalah nombor rawak yang mematuhi taburan Gaussian.
2. Python melaksanakan penambahan hingar imej
Menggunakan Python untuk menambah hingar pada imej boleh dicapai dengan menggunakan perpustakaan NumPy dan OpenCV. Di bawah ialah kod sampel yang menunjukkan cara menambah hingar Gaussian pada imej.
import cv2 import numpy as np def add_gaussian_noise(image): mean = 0 std_dev = 50 noise = np.random.normal(mean, std_dev, image.shape).astype(np.uint8) noisy_image = cv2.add(image, noise) return noisy_image # 读取图像 image = cv2.imread('image.jpg') # 添加高斯噪声 noisy_image = add_gaussian_noise(image) # 显示原始图像和噪声图像 cv2.imshow('Original Image', image) cv2.imshow('Noisy Image', noisy_image) cv2.waitKey(0) cv2.destroyAllWindows()
Dalam kod di atas, mula-mula gunakan fungsi cv2.imread()
untuk membaca imej. Kemudian, fungsi add_gaussian_noise()
ditakrifkan, yang menggunakan fungsi np.random.normal()
untuk menjana hingar rawak yang mematuhi taburan Gaussian dan menggunakan cv2 . Fungsi add()
menambah hingar pada imej asal. Akhir sekali, gunakan fungsi cv2.imshow()
untuk memaparkan imej asal dan imej hingar, dan gunakan fungsi seperti cv2.waitKey(0)
untuk mengawal masa paparan dan interaksi. cv2.imread()
函数读取一张图像。然后,定义了一个add_gaussian_noise()
函数,该函数使用np.random.normal()
函数生成符合高斯分布的随机噪声,并使用cv2.add()
函数将噪声添加到原始图像中。最后,使用cv2.imshow()
函数显示原始图像和噪声图像,并使用cv2.waitKey(0)
等函数控制显示的时间和交互。
三、其他噪声添加方法
除了高斯噪声,还有其他一些噪声添加方法可以使用。例如,可以使用np.random.randint()
函数生成椒盐噪声,代码示例如下:
def add_salt_and_pepper_noise(image, salt_prob, pepper_prob): noise = np.zeros(image.shape, dtype=np.uint8) salt_locations = np.random.rand(*image.shape) < salt_prob pepper_locations = np.random.rand(*image.shape) < pepper_prob noise[salt_locations] = 255 noise[pepper_locations] = 0 noisy_image = cv2.add(image, noise) return noisy_image # 添加椒盐噪声 noisy_image = add_salt_and_pepper_noise(image, salt_prob=0.01, pepper_prob=0.01)
在以上示例代码中,add_salt_and_pepper_noise()
函数使用np.random.randint()
Selain bunyi Gaussian, terdapat kaedah penambahan hingar lain yang boleh digunakan. Sebagai contoh, anda boleh menggunakan fungsi np.random.randint()
untuk menghasilkan bunyi garam dan lada Contoh kod adalah seperti berikut:
Dalam kod sampel di atas, add_salt_and_pepper_noise. ()
fungsi menggunakan np.random.randint()
menjana integer rawak antara 0 dan 255, kemudian menetapkan nilai piksel kepada putih dan hitam mengikut nisbah garam dan bunyi lada, dan akhirnya menambah bunyi pada imej asal.
Atas ialah kandungan terperinci Bagaimana untuk menambah bunyi pada gambar menggunakan Python. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas



Hadidb: Pangkalan data Python yang ringan, tinggi, Hadidb (Hadidb) adalah pangkalan data ringan yang ditulis dalam Python, dengan tahap skalabilitas yang tinggi. Pasang HadIdb menggunakan pemasangan PIP: Pengurusan Pengguna PipInstallHadidB Buat Pengguna: CreateUser () Kaedah untuk membuat pengguna baru. Kaedah pengesahan () mengesahkan identiti pengguna. dariHadidb.OperationImportuserer_Obj = user ("admin", "admin") user_obj.

Tidak mustahil untuk melihat kata laluan MongoDB secara langsung melalui Navicat kerana ia disimpan sebagai nilai hash. Cara mendapatkan kata laluan yang hilang: 1. Tetapkan semula kata laluan; 2. Periksa fail konfigurasi (mungkin mengandungi nilai hash); 3. Semak Kod (boleh kata laluan Hardcode).

Anda boleh mempelajari konsep pengaturcaraan asas dan kemahiran Python dalam masa 2 jam. 1. Belajar Pembolehubah dan Jenis Data, 2.

Panduan Pengoptimuman Prestasi Pangkalan Data MySQL Dalam aplikasi yang berintensifkan sumber, pangkalan data MySQL memainkan peranan penting dan bertanggungjawab untuk menguruskan urus niaga besar-besaran. Walau bagaimanapun, apabila skala aplikasi berkembang, kemunculan prestasi pangkalan data sering menjadi kekangan. Artikel ini akan meneroka satu siri strategi pengoptimuman prestasi MySQL yang berkesan untuk memastikan aplikasi anda tetap cekap dan responsif di bawah beban tinggi. Kami akan menggabungkan kes-kes sebenar untuk menerangkan teknologi utama yang mendalam seperti pengindeksan, pengoptimuman pertanyaan, reka bentuk pangkalan data dan caching. 1. Reka bentuk seni bina pangkalan data dan seni bina pangkalan data yang dioptimumkan adalah asas pengoptimuman prestasi MySQL. Berikut adalah beberapa prinsip teras: Memilih jenis data yang betul dan memilih jenis data terkecil yang memenuhi keperluan bukan sahaja dapat menjimatkan ruang penyimpanan, tetapi juga meningkatkan kelajuan pemprosesan data.

Python digunakan secara meluas dalam bidang pembangunan web, sains data, pembelajaran mesin, automasi dan skrip. 1) Dalam pembangunan web, kerangka Django dan Flask memudahkan proses pembangunan. 2) Dalam bidang sains data dan pembelajaran mesin, numpy, panda, scikit-learn dan perpustakaan tensorflow memberikan sokongan yang kuat. 3) Dari segi automasi dan skrip, Python sesuai untuk tugas -tugas seperti ujian automatik dan pengurusan sistem.

Sebagai profesional data, anda perlu memproses sejumlah besar data dari pelbagai sumber. Ini boleh menimbulkan cabaran kepada pengurusan data dan analisis. Nasib baik, dua perkhidmatan AWS dapat membantu: AWS Glue dan Amazon Athena.

Tidak, MySQL tidak dapat menyambung terus ke SQL Server. Tetapi anda boleh menggunakan kaedah berikut untuk melaksanakan interaksi data: Gunakan middleware: data eksport dari MySQL ke format pertengahan, dan kemudian mengimportnya ke SQL Server melalui middleware. Menggunakan Pangkalan Data Pangkalan Data: Alat perniagaan menyediakan antara muka yang lebih mesra dan ciri -ciri canggih, pada dasarnya masih dilaksanakan melalui middleware.

Langkah -langkah untuk memulakan pelayan Redis termasuk: Pasang Redis mengikut sistem operasi. Mulakan perkhidmatan Redis melalui Redis-server (Linux/macOS) atau redis-server.exe (Windows). Gunakan redis-cli ping (linux/macOS) atau redis-cli.exe ping (windows) perintah untuk memeriksa status perkhidmatan. Gunakan klien Redis, seperti redis-cli, python, atau node.js untuk mengakses pelayan.
