Algoritma tamak dan pelaksanaannya dalam C++
Algoritma tamak ialah idea algoritma yang biasa digunakan dan digunakan secara meluas dalam banyak masalah. Idea teras adalah untuk hanya mempertimbangkan penyelesaian optimum segera apabila membuat keputusan pada setiap langkah, tanpa mengambil kira kesan jangka panjang.
Dalam C++, pelaksanaan algoritma tamak selalunya melibatkan operasi asas seperti pengisihan dan pemprosesan data. Di bawah, kami akan memperkenalkan idea algoritma tamak dan pelaksanaannya dalam C++ untuk beberapa masalah biasa.
1. Masalah Penjadualan Aktiviti
Memandangkan satu set aktiviti, setiap aktiviti mempunyai masa mula dan masa tamat, dan seseorang hanya boleh mengambil bahagian dalam satu aktiviti pada satu masa. Tanya bagaimana untuk mengatur aktiviti untuk memastikan bahawa orang ini mengambil bahagian dalam bilangan maksimum aktiviti.
Idea algoritma tamak adalah untuk mengisih dahulu setiap aktiviti dalam tertib menaik menjelang masa tamat, dan kemudian bermula dari aktiviti pertama, pilih aktiviti dengan masa tamat paling awal sebagai aktiviti pertama untuk mengambil bahagian. Kemudian, pilih aktiviti dengan masa tamat paling awal yang serasi dengan aktiviti semasa daripada aktiviti yang tinggal dan jadikan aktiviti seterusnya untuk disertai. Ulangi proses ini sehingga semua aktiviti telah dijadualkan.
Berikut ialah pelaksanaan kod C++:
struct activity { int start; int end; } bool cmp(activity a, activity b) { return a.end < b.end; } int arrangeActivities(activity arr[], int n) { sort(arr, arr + n, cmp); int cnt = 1; int lastEnd = arr[0].end; for (int i = 1; i < n; i++) { if (arr[i].start >= lastEnd) { cnt++; lastEnd = arr[i].end; } } return cnt; }
2. Masalah pengekodan Huffman
Memandangkan satu set nilai berat, ia diperlukan untuk mengekodnya ke dalam rentetan binari yang tidak sama panjang supaya panjang pengekodan jumlah semua nilai diminimumkan.
Idea algoritma tamak adalah untuk mengisih pemberat terlebih dahulu dalam tertib menaik, pilih dua nod dengan pemberat terkecil dalam setiap langkah untuk digabungkan menjadi nod baharu, dan tentukan beratnya sebagai jumlah pemberat daripada dua nod. Ulangi proses ini sehingga semua nod digabungkan menjadi nod akar. Pokok binari yang sepadan dengan nod akar ini ialah pokok Huffman. Apabila melintasi pokok Huffman, berjalan ke kiri bermakna menambah 0, dan berjalan ke kanan bermakna menambah 1. Dengan cara ini, pengekodan yang sepadan bagi setiap berat boleh diselesaikan.
Berikut ialah pelaksanaan kod C++:
struct Node { int weight; int parent, leftChild, rightChild; } bool cmp(Node a, Node b) { return a.weight < b.weight; } void buildHuffmanTree(Node arr[], int n) { // 初始化所有节点 for (int i = 0; i < n; i++) { arr[i].parent = -1; arr[i].leftChild = -1; arr[i].rightChild = -1; } // 构建哈夫曼树 for (int i = n; i < 2 * n - 1; i++) { int minIndex1 = -1, minIndex2 = -1; for (int j = 0; j < i; j++) { if (arr[j].parent == -1) { if (minIndex1 == -1) { minIndex1 = j; } else if (minIndex2 == -1) { minIndex2 = j; } else { if (arr[j].weight < arr[minIndex1].weight) { minIndex2 = minIndex1; minIndex1 = j; } else if (arr[j].weight < arr[minIndex2].weight) { minIndex2 = j; } } } } arr[minIndex1].parent = i; arr[minIndex2].parent = i; arr[i].leftChild = minIndex1; arr[i].rightChild = minIndex2; arr[i].weight = arr[minIndex1].weight + arr[minIndex2].weight; } } void findHuffmanCode(Node arr[], int n) { // 从叶节点开始遍历哈夫曼树 for (int i = 0; i < n; i++) { string code = ""; int currentNode = i; while (arr[currentNode].parent != -1) { int parent = arr[currentNode].parent; if (arr[parent].leftChild == currentNode) { code = "0" + code; } else { code = "1" + code; } currentNode = parent; } cout << code << endl; } }
3 Selesaikan masalah penukaran syiling
Memandangkan nilai muka set syiling dan jumlah perubahan yang perlu dibuat, tanya berapa banyak syiling yang diperlukan untuk membuat jumlah.
Idea algoritma tamak adalah untuk menyusun dahulu syiling dalam susunan menurun mengikut nilai muka, kemudian mulakan dengan syiling dengan nilai muka terbesar, teruskan mengambil syiling sehingga tiada lagi pilihan boleh dibuat, dan kemudian gunakan syiling dengan nilai muka terbesar seterusnya sehingga jumlah keseluruhan dikumpulkan.
Berikut ialah pelaksanaan kod C++:
bool cmp(int a, int b) { return a > b; } int minCoinNum(int coins[], int n, int amount) { sort(coins, coins + n, cmp); int cnt = 0; for (int i = 0; i < n; i++) { if (amount >= coins[i]) { cnt += amount / coins[i]; amount -= coins[i] * (amount / coins[i]); } } return cnt; }
Dalam proses pembangunan sebenar, algoritma tamak selalunya bukan penyelesaian yang optimum, tetapi kesederhanaan dan kecekapannya menjadikannya digunakan secara meluas. Melalui pengenalan tiga masalah tipikal di atas, saya percaya pembaca dapat lebih memahami dan menguasai idea algoritma tamak dan pelaksanaannya dalam C++.
Atas ialah kandungan terperinci Algoritma tamak dan pelaksanaannya dalam C++. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas



Langkah-langkah untuk melaksanakan corak strategi dalam C++ adalah seperti berikut: tentukan antara muka strategi dan isytiharkan kaedah yang perlu dilaksanakan. Buat kelas strategi khusus, laksanakan antara muka masing-masing dan sediakan algoritma yang berbeza. Gunakan kelas konteks untuk memegang rujukan kepada kelas strategi konkrit dan melaksanakan operasi melaluinya.

Golang dan C++ masing-masing adalah sampah yang dikumpul dan bahasa pengaturcaraan pengurusan memori manual, dengan sistem sintaks dan jenis yang berbeza. Golang melaksanakan pengaturcaraan serentak melalui Goroutine, dan C++ melaksanakannya melalui benang. Pengurusan memori Golang adalah mudah, dan C++ mempunyai prestasi yang lebih kukuh. Dalam kes praktikal, kod Golang adalah lebih ringkas dan C++ mempunyai kelebihan prestasi yang jelas.

Pengendalian pengecualian bersarang dilaksanakan dalam C++ melalui blok try-catch bersarang, membenarkan pengecualian baharu dibangkitkan dalam pengendali pengecualian. Langkah-langkah cuba-tangkap bersarang adalah seperti berikut: 1. Blok cuba-tangkap luar mengendalikan semua pengecualian, termasuk yang dilemparkan oleh pengendali pengecualian dalam. 2. Blok cuba-tangkap dalam mengendalikan jenis pengecualian tertentu, dan jika pengecualian luar skop berlaku, kawalan diberikan kepada pengendali pengecualian luaran.

Untuk lelaran ke atas bekas STL, anda boleh menggunakan fungsi begin() dan end() bekas untuk mendapatkan julat lelaran: Vektor: Gunakan gelung for untuk lelaran ke atas julat lelaran. Senarai terpaut: Gunakan fungsi ahli seterusnya() untuk melintasi elemen senarai terpaut. Pemetaan: Dapatkan iterator nilai kunci dan gunakan gelung for untuk melintasinya.

Warisan templat C++ membenarkan kelas terbitan templat menggunakan semula kod dan kefungsian templat kelas asas, yang sesuai untuk mencipta kelas dengan logik teras yang sama tetapi gelagat khusus yang berbeza. Sintaks warisan templat ialah: templateclassDerived:publicBase{}. Contoh: templateclassBase{};templateclassDerived:publicBase{};. Kes praktikal: Mencipta kelas terbitan Derived, mewarisi fungsi mengira Base kelas asas, dan menambah kaedah printCount untuk mencetak kiraan semasa.

Punca dan penyelesaian untuk kesilapan Apabila menggunakan PECL untuk memasang sambungan dalam persekitaran Docker Apabila menggunakan persekitaran Docker, kami sering menemui beberapa sakit kepala ...

Bagaimana untuk mengakses elemen dalam bekas C++ STL? Terdapat beberapa cara untuk melakukan ini: Melintasi bekas: Gunakan lelaran Berasaskan julat untuk gelung untuk mengakses elemen tertentu: Gunakan indeks (pengendali subskrip []) Gunakan kekunci (std::map atau std::unordered_map)

Dalam C++ berbilang benang, pengendalian pengecualian dilaksanakan melalui mekanisme std::promise dan std::future: gunakan objek promise untuk merekodkan pengecualian dalam utas yang membuang pengecualian. Gunakan objek masa hadapan untuk menyemak pengecualian dalam urutan yang menerima pengecualian. Kes praktikal menunjukkan cara menggunakan janji dan niaga hadapan untuk menangkap dan mengendalikan pengecualian dalam urutan yang berbeza.
