Jadual Kandungan
Set Data MPG automatik
Sediakan set data
Bagaimana untuk meramalkan kecekapan bahan api menggunakan TensorFlow?
Contoh
Output
Kesimpulan
Rumah pembangunan bahagian belakang Tutorial Python Meramalkan kecekapan bahan api menggunakan Tensorflow dalam Python

Meramalkan kecekapan bahan api menggunakan Tensorflow dalam Python

Aug 25, 2023 pm 02:41 PM
python meramal tensorflow kecekapan bahan api

Meramalkan kecekapan bahan api menggunakan Tensorflow dalam Python

Meramalkan kecekapan bahan api adalah penting untuk mengoptimumkan prestasi kenderaan dan mengurangkan pelepasan karbon, dan ini boleh diramalkan dengan mudah menggunakan perpustakaan Python Tensorflow. Dalam artikel ini, kami akan meneroka cara memanfaatkan kuasa perpustakaan pembelajaran mesin popular Tensorflow untuk meramalkan kecekapan bahan api menggunakan Python. Dengan membina model ramalan berdasarkan set data Auto MPG, kami boleh menganggarkan kecekapan bahan api kenderaan dengan tepat. Mari kita mendalami proses membuat ramalan kecekapan bahan api yang tepat menggunakan Tensorflow dalam Python.

Set Data MPG automatik

Untuk meramalkan kecekapan bahan api dengan tepat, kami memerlukan set data yang boleh dipercayai. Dataset Auto MPG berasal daripada Repositori Pembelajaran Mesin UCI dan menyediakan maklumat yang diperlukan untuk model kami. Ia mengandungi pelbagai sifat seperti bilangan silinder, anjakan, berat, kuasa kuda, pecutan, negara asal dan tahun model. Atribut ini berfungsi sebagai ciri, manakala kecekapan bahan api (diukur dalam batu per gelen, atau MPG) berfungsi sebagai label. Dengan menganalisis set data ini, kami boleh melatih model untuk mengenali corak dan membuat ramalan berdasarkan ciri kenderaan yang serupa.

Sediakan set data

Sebelum membina model ramalan, kita perlu menyediakan set data. Ini melibatkan pengendalian nilai yang hilang dan menormalkan ciri. Nilai yang tiada boleh mengganggu proses latihan, jadi kami mengalih keluarnya daripada set data. Ciri standard seperti kuasa kuda dan berat memastikan setiap ciri berada dalam julat yang sama. Langkah ini penting kerana ciri dengan julat berangka yang besar boleh mendominasi proses pembelajaran model. Menormalkan set data memastikan semua ciri dilayan secara adil semasa latihan.

Bagaimana untuk meramalkan kecekapan bahan api menggunakan TensorFlow?

Berikut adalah langkah yang akan kami ikuti untuk meramal kecekapan bahan api menggunakan Tensorflow -

  • Import perpustakaan yang diperlukan - kami mengimport aliran tensor, Keras, lapisan dan panda.

  • Muat set data MPG Auto. Kami juga menentukan nama lajur dan mengendalikan sebarang nilai yang hilang.

  • Pisah set data kepada ciri dan label - Kami bahagikan set data kepada dua bahagian - ciri (pembolehubah input) dan label (pembolehubah output).

  • Ciri dinormalkan - Kami menggunakan penskalaan min-maks untuk menormalkan ciri.

  • Set data dibahagikan kepada set latihan dan set ujian.

  • Tentukan seni bina model - Kami mentakrifkan model berjujukan ringkas dengan tiga lapisan padat, dengan 64 neuron setiap lapisan dan menggunakan fungsi pengaktifan ReLU.

  • Kompilasi model - Kami menyusun model menggunakan fungsi kehilangan ralat kuasa dua (MSE) dan pengoptimum RMSprop.

  • Latih model - Latih model selama 1000 zaman pada set latihan dan nyatakan pembahagian pengesahan 0.2.

  • Nilai model - Lakukan penilaian model pada set ujian dan kira purata MSE serta kecekapan bahan api dan ralat mutlak (MAE).

  • Kira kecekapan bahan api kereta baharu - Kami menggunakan DataFrame panda untuk mencipta fungsi bagi kereta baharu. Kami menormalkan ciri kereta baharu menggunakan faktor penskalaan yang sama seperti set data asal.

  • Ramalkan kecekapan bahan api kereta baharu menggunakan model terlatih.

  • Cetak Kecekapan Bahan Api Diramalkan - Kami mencetak ramalan kecekapan bahan api kereta baharu ke konsol

  • Cetak metrik ujian - Kami mencetak ujian MAE dan MSE ke konsol.

Atur cara di bawah menggunakan Tensorflow untuk membina model rangkaian saraf untuk meramalkan kecekapan bahan api berdasarkan set data Auto MPG.

Contoh

# Import necessary libraries
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
import pandas as pd

# Load the Auto MPG dataset
url = "https://archive.ics.uci.edu/ml/machine-learning-databases/auto-mpg/auto-mpg.data"
column_names = ['MPG','Cylinders','Displacement','Horsepower','Weight',
   'Acceleration', 'Model Year', 'Origin']
raw_dataset = pd.read_csv(url, names=column_names,
   na_values='?', comment='\t', sep=' ', skipinitialspace=True)

# Drop missing values
dataset = raw_dataset.dropna()

# Separate the dataset into features and labels
cfeatures = dataset.drop('MPG', axis=1)
labels = dataset['MPG']

# Normalize the features using min-max scaling
normalized_features = (cfeatures - cfeatures.min()) / (cfeatures.max() - cfeatures.min())

# Split the dataset into training and testing sets
train_features = normalized_features[:300]
test_features = normalized_features[300:]
train_labels = labels[:300]
test_labels = labels[300:]

# Define the model architecture for this we will use sequential API of the keras
model1 = keras.Sequential([
   layers.Dense(64, activation='relu', input_shape=[len(train_features.keys())]),
   layers.Dense(64, activation='relu'),
   layers.Dense(1)
])
#if you want summary of the model’s architecture you can use the code: model1.summary()

# Model compilation
optimizer = tf.keras.optimizers.RMSprop(0.001)
model1.compile(loss='mse', optimizer=optimizer, metrics=['mae', 'mse'])

# Train the model
Mhistory = model1.fit(
   train_features, train_labels,
   epochs=1000, validation_split = 0.2, verbose=0)

# Evaluate the model on the test set
test_loss, test_mae, test_mse = model1.evaluate(test_features, test_labels)
# Train the model
model1.fit(train_features, train_labels, epochs=1000, verbose=0)

# Calculation of the fuel efficiency for a new car
new_car_features = pd.DataFrame([[4, 121, 110, 2800, 15.4, 81, 3]], columns=column_names[1:])

normalized_new_car_features = (new_car_features - cfeatures.min()) / (cfeatures.max() - cfeatures.min())
fuel_efficiencyc = model1.predict(normalized_new_car_features)

# Print the test metrics
print("Test MAE:", test_mae)
print("Test MSE:", test_mse)
print("Predicted Fuel Efficiency:", fuel_efficiencyc[0][0])
Salin selepas log masuk

Output

C:\Users\Tutorialspoint>python image.py
3/3 [==============================] - 0s 2ms/step - loss: 18.8091 - mae: 3.3231 - mse: 18.8091
1/1 [==============================] - 0s 90ms/step
Test MAE: 3.3230929374694824
Test MSE: 18.80905532836914
Predicted Fuel Efficiency: 24.55885
Salin selepas log masuk

Kesimpulan

Ringkasnya, meramalkan kecekapan bahan api menggunakan Tensorflow dalam Python ialah alat berkuasa yang boleh membantu pengeluar dan pengguna membuat keputusan termaklum. Dengan menganalisis pelbagai ciri kenderaan dan melatih model rangkaian saraf, kami boleh meramalkan kecekapan bahan api dengan tepat.

Maklumat ini boleh menggalakkan pembangunan kenderaan yang lebih cekap tenaga, mengurangkan kesan alam sekitar dan menjimatkan kos untuk pengguna. Fleksibiliti dan kemudahan penggunaan Tensorflow menjadikannya aset berharga kepada industri automotif dalam usahanya untuk meningkatkan kecekapan bahan api.

Atas ialah kandungan terperinci Meramalkan kecekapan bahan api menggunakan Tensorflow dalam Python. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

AI Hentai Generator

AI Hentai Generator

Menjana ai hentai secara percuma.

Artikel Panas

R.E.P.O. Kristal tenaga dijelaskan dan apa yang mereka lakukan (kristal kuning)
3 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Tetapan grafik terbaik
3 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Cara Memperbaiki Audio Jika anda tidak dapat mendengar sesiapa
3 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌

Alat panas

Notepad++7.3.1

Notepad++7.3.1

Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina

SublimeText3 versi Cina

Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1

Hantar Studio 13.0.1

Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6

Dreamweaver CS6

Alat pembangunan web visual

SublimeText3 versi Mac

SublimeText3 versi Mac

Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Adakah kelajuan penukaran cepat apabila menukar XML ke PDF pada telefon bimbit? Adakah kelajuan penukaran cepat apabila menukar XML ke PDF pada telefon bimbit? Apr 02, 2025 pm 10:09 PM

Kelajuan XML mudah alih ke PDF bergantung kepada faktor -faktor berikut: kerumitan struktur XML. Kaedah Penukaran Konfigurasi Perkakasan Mudah Alih (Perpustakaan, Algoritma) Kaedah Pengoptimuman Kualiti Kod (Pilih perpustakaan yang cekap, mengoptimumkan algoritma, data cache, dan menggunakan pelbagai threading). Secara keseluruhannya, tidak ada jawapan mutlak dan ia perlu dioptimumkan mengikut keadaan tertentu.

Bagaimana cara menukar fail XML ke PDF di telefon anda? Bagaimana cara menukar fail XML ke PDF di telefon anda? Apr 02, 2025 pm 10:12 PM

Tidak mustahil untuk menyelesaikan penukaran XML ke PDF secara langsung di telefon anda dengan satu aplikasi. Ia perlu menggunakan perkhidmatan awan, yang boleh dicapai melalui dua langkah: 1. Tukar XML ke PDF di awan, 2. Akses atau muat turun fail PDF yang ditukar pada telefon bimbit.

Apakah fungsi jumlah bahasa C? Apakah fungsi jumlah bahasa C? Apr 03, 2025 pm 02:21 PM

Tiada fungsi jumlah terbina dalam dalam bahasa C, jadi ia perlu ditulis sendiri. Jumlah boleh dicapai dengan melintasi unsur -unsur array dan terkumpul: Versi gelung: SUM dikira menggunakan panjang gelung dan panjang. Versi Pointer: Gunakan petunjuk untuk menunjuk kepada unsur-unsur array, dan penjumlahan yang cekap dicapai melalui penunjuk diri sendiri. Secara dinamik memperuntukkan versi Array: Perlawanan secara dinamik dan uruskan memori sendiri, memastikan memori yang diperuntukkan dibebaskan untuk mengelakkan kebocoran ingatan.

Adakah terdapat aplikasi mudah alih yang boleh menukar XML ke PDF? Adakah terdapat aplikasi mudah alih yang boleh menukar XML ke PDF? Apr 02, 2025 pm 09:45 PM

Tiada aplikasi yang boleh menukar semua fail XML ke dalam PDF kerana struktur XML adalah fleksibel dan pelbagai. Inti XML ke PDF adalah untuk menukar struktur data ke dalam susun atur halaman, yang memerlukan parsing XML dan menjana PDF. Kaedah umum termasuk parsing XML menggunakan perpustakaan python seperti ElementTree dan menjana PDF menggunakan perpustakaan ReportLab. Untuk XML yang kompleks, mungkin perlu menggunakan struktur transformasi XSLT. Apabila mengoptimumkan prestasi, pertimbangkan untuk menggunakan multithreaded atau multiprocesses dan pilih perpustakaan yang sesuai.

Alat pemformatan XML yang disyorkan Alat pemformatan XML yang disyorkan Apr 02, 2025 pm 09:03 PM

Alat pemformatan XML boleh menaip kod mengikut peraturan untuk meningkatkan kebolehbacaan dan pemahaman. Apabila memilih alat, perhatikan keupayaan penyesuaian, pengendalian keadaan khas, prestasi dan kemudahan penggunaan. Jenis alat yang biasa digunakan termasuk alat dalam talian, pemalam IDE, dan alat baris arahan.

Bagaimana cara menukar XML ke PDF di telefon anda? Bagaimana cara menukar XML ke PDF di telefon anda? Apr 02, 2025 pm 10:18 PM

Ia tidak mudah untuk menukar XML ke PDF secara langsung pada telefon anda, tetapi ia boleh dicapai dengan bantuan perkhidmatan awan. Adalah disyorkan untuk menggunakan aplikasi mudah alih ringan untuk memuat naik fail XML dan menerima PDF yang dihasilkan, dan menukarnya dengan API awan. API awan menggunakan perkhidmatan pengkomputeran tanpa pelayan, dan memilih platform yang betul adalah penting. Kerumitan, pengendalian kesilapan, keselamatan, dan strategi pengoptimuman perlu dipertimbangkan ketika mengendalikan penjanaan XML dan penjanaan PDF. Seluruh proses memerlukan aplikasi front-end dan API back-end untuk bekerjasama, dan ia memerlukan pemahaman tentang pelbagai teknologi.

Cara menukar XML ke dalam gambar Cara menukar XML ke dalam gambar Apr 03, 2025 am 07:39 AM

XML boleh ditukar kepada imej dengan menggunakan perpustakaan penukar XSLT atau imej. XSLT Converter: Gunakan pemproses XSLT dan stylesheet untuk menukar XML ke imej. Perpustakaan Imej: Gunakan perpustakaan seperti PIL atau ImageMagick untuk membuat imej dari data XML, seperti bentuk lukisan dan teks.

Cara Membuka Format XML Cara Membuka Format XML Apr 02, 2025 pm 09:00 PM

Gunakan kebanyakan editor teks untuk membuka fail XML; Jika anda memerlukan paparan pokok yang lebih intuitif, anda boleh menggunakan editor XML, seperti editor XML oksigen atau XMLSPY; Jika anda memproses data XML dalam program, anda perlu menggunakan bahasa pengaturcaraan (seperti Python) dan perpustakaan XML (seperti XML.Etree.ElementTree) untuk menghuraikan.

See all articles