


Cara menggunakan Python untuk melatih model pada imej
Cara menggunakan Python untuk melatih model pada imej
Ikhtisar:
Dalam bidang penglihatan komputer, menggunakan model pembelajaran mendalam untuk mengklasifikasikan imej, pengesanan sasaran dan tugas lain telah menjadi kaedah biasa. Sebagai bahasa pengaturcaraan yang digunakan secara meluas, Python menyediakan banyak perpustakaan dan alatan, menjadikannya agak mudah untuk melatih model pada imej. Artikel ini akan memperkenalkan cara menggunakan Python dan perpustakaan berkaitannya untuk melatih model pada imej, dan menyediakan contoh kod yang sepadan.
Persediaan alam sekitar:
Sebelum anda mula, anda perlu memastikan anda telah memasang perpustakaan dan alatan berikut:
- Python: 3.6 atau lebih tinggi
- Numpy: untuk memproses data imej
- Pandas
- Panda: untuk pemprosesan data dan import Matplotlib: untuk menggambarkan imej dan hasil
- Scikit-belajar: untuk latihan model pembelajaran mesin
- TensorFlow atau PyTorch: untuk latihan model pembelajaran mendalam
- GPU (pilihan): Menggunakan GPU boleh mempercepatkan proses latihan
1: Penyediaan data
import pandas as pd # 导入图像和标签 image_paths = ['path/to/image1.jpg', 'path/to/image2.jpg', ...] labels = [0, 1, ...] # 创建DataFrame data = pd.DataFrame({'image_path': image_paths, 'label': labels})
Langkah 2: Prapemprosesan dataSeterusnya, praproses imej untuk memudahkan latihan model. Biasanya termasuk saiz semula imej, penyeragaman data dan operasi lain. Operasi ini boleh dilaksanakan menggunakan perpustakaan Numpy dan OpenCV. Contohnya:
import cv2 import numpy as np # 定义图像大小 image_size = (224, 224) # 预处理函数 def preprocess_image(image_path): # 读取图像 image = cv2.imread(image_path) # 调整大小 image = cv2.resize(image, image_size) # 数据标准化 image = image.astype(np.float32) / 255. # 返回处理后的图像 return image # 预处理图像数据 data['image'] = data['image_path'].apply(preprocess_image)
Langkah 3: Latihan modelSeterusnya, anda boleh menggunakan algoritma pembelajaran mesin dalam perpustakaan Scikit-learn, atau gunakan rangka kerja pembelajaran mendalam seperti TensorFlow atau PyTorch untuk latihan model. Di sini kita mengambil TensorFlow sebagai contoh. Pertama, anda perlu mentakrifkan struktur model pembelajaran mendalam. Model boleh dibina menggunakan antara muka Keras TensorFlow. Contohnya, berikut ialah model rangkaian neural konvolusi yang mudah:
from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense # 定义模型 model = Sequential() model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(224, 224, 3))) model.add(MaxPooling2D((2, 2))) model.add(Conv2D(64, (3, 3), activation='relu')) model.add(MaxPooling2D((2, 2))) model.add(Conv2D(128, (3, 3), activation='relu')) model.add(MaxPooling2D((2, 2))) model.add(Flatten()) model.add(Dense(64, activation='relu')) model.add(Dense(1, activation='sigmoid'))
# 编译模型 model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) # 训练模型 model.fit(data['image'].to_list(), data['label'].to_list(), epochs=10, batch_size=32)
Langkah 4: Penilaian dan ramalan modelSelepas latihan selesai, anda boleh menggunakan set ujian untuk menilai model dan mengira ketepatan, ketepatan dan penunjuk lain. Contohnya:
# 模型评估 test_loss, test_acc = model.evaluate(test_data['image'].to_list(), test_data['label'].to_list()) print('Test Accuracy:', test_acc) # 模型预测 predictions = model.predict(test_data['image'].to_list())
Kesimpulan: Menggunakan Python untuk melatih model pada imej adalah proses yang agak mudah dan fleksibel. Artikel ini memperkenalkan langkah penyediaan data, prapemprosesan data, latihan model dan penilaian serta menyediakan contoh kod yang sepadan. Dengan menguasai kemahiran asas ini, anda boleh meneroka lebih banyak model dan algoritma pembelajaran yang mendalam dan menerapkannya pada projek sebenar. 🎜
Atas ialah kandungan terperinci Cara menggunakan Python untuk melatih model pada imej. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas



PHP dan Python mempunyai kelebihan dan kekurangan mereka sendiri, dan pilihannya bergantung kepada keperluan projek dan keutamaan peribadi. 1.PHP sesuai untuk pembangunan pesat dan penyelenggaraan aplikasi web berskala besar. 2. Python menguasai bidang sains data dan pembelajaran mesin.

Python dan JavaScript mempunyai kelebihan dan kekurangan mereka sendiri dari segi komuniti, perpustakaan dan sumber. 1) Komuniti Python mesra dan sesuai untuk pemula, tetapi sumber pembangunan depan tidak kaya dengan JavaScript. 2) Python berkuasa dalam bidang sains data dan perpustakaan pembelajaran mesin, sementara JavaScript lebih baik dalam perpustakaan pembangunan dan kerangka pembangunan depan. 3) Kedua -duanya mempunyai sumber pembelajaran yang kaya, tetapi Python sesuai untuk memulakan dengan dokumen rasmi, sementara JavaScript lebih baik dengan MDNWebDocs. Pilihan harus berdasarkan keperluan projek dan kepentingan peribadi.

Membolehkan pecutan GPU pytorch pada sistem CentOS memerlukan pemasangan cuda, cudnn dan GPU versi pytorch. Langkah-langkah berikut akan membimbing anda melalui proses: Pemasangan CUDA dan CUDNN Tentukan keserasian versi CUDA: Gunakan perintah NVIDIA-SMI untuk melihat versi CUDA yang disokong oleh kad grafik NVIDIA anda. Sebagai contoh, kad grafik MX450 anda boleh menyokong CUDA11.1 atau lebih tinggi. Muat turun dan pasang Cudatoolkit: Lawati laman web rasmi Nvidiacudatoolkit dan muat turun dan pasang versi yang sepadan mengikut versi CUDA tertinggi yang disokong oleh kad grafik anda. Pasang Perpustakaan Cudnn:

Docker menggunakan ciri -ciri kernel Linux untuk menyediakan persekitaran berjalan yang cekap dan terpencil. Prinsip kerjanya adalah seperti berikut: 1. Cermin digunakan sebagai templat baca sahaja, yang mengandungi semua yang anda perlukan untuk menjalankan aplikasi; 2. Sistem Fail Kesatuan (Unionfs) menyusun pelbagai sistem fail, hanya menyimpan perbezaan, menjimatkan ruang dan mempercepatkan; 3. Daemon menguruskan cermin dan bekas, dan pelanggan menggunakannya untuk interaksi; 4. Ruang nama dan cgroups melaksanakan pengasingan kontena dan batasan sumber; 5. Pelbagai mod rangkaian menyokong interkoneksi kontena. Hanya dengan memahami konsep -konsep teras ini, anda boleh menggunakan Docker dengan lebih baik.

Latihan yang diedarkan Pytorch pada sistem CentOS memerlukan langkah -langkah berikut: Pemasangan Pytorch: Premisnya ialah Python dan PIP dipasang dalam sistem CentOS. Bergantung pada versi CUDA anda, dapatkan arahan pemasangan yang sesuai dari laman web rasmi Pytorch. Untuk latihan CPU sahaja, anda boleh menggunakan arahan berikut: PipinstallToRchTorchVisionTorchaudio Jika anda memerlukan sokongan GPU, pastikan versi CUDA dan CUDNN yang sama dipasang dan gunakan versi pytorch yang sepadan untuk pemasangan. Konfigurasi Alam Sekitar Teragih: Latihan yang diedarkan biasanya memerlukan pelbagai mesin atau mesin berbilang mesin tunggal. Tempat

Penyimpanan Objek Minio: Penyebaran berprestasi tinggi di bawah CentOS System Minio adalah prestasi tinggi, sistem penyimpanan objek yang diedarkan yang dibangunkan berdasarkan bahasa Go, serasi dengan Amazons3. Ia menyokong pelbagai bahasa pelanggan, termasuk Java, Python, JavaScript, dan GO. Artikel ini akan memperkenalkan pemasangan dan keserasian minio pada sistem CentOS. Keserasian versi CentOS Minio telah disahkan pada pelbagai versi CentOS, termasuk tetapi tidak terhad kepada: CentOS7.9: Menyediakan panduan pemasangan lengkap yang meliputi konfigurasi kluster, penyediaan persekitaran, tetapan fail konfigurasi, pembahagian cakera, dan mini

Apabila memasang pytorch pada sistem CentOS, anda perlu dengan teliti memilih versi yang sesuai dan pertimbangkan faktor utama berikut: 1. Keserasian Persekitaran Sistem: Sistem Operasi: Adalah disyorkan untuk menggunakan CentOS7 atau lebih tinggi. CUDA dan CUDNN: Versi Pytorch dan versi CUDA berkait rapat. Sebagai contoh, Pytorch1.9.0 memerlukan CUDA11.1, manakala Pytorch2.0.1 memerlukan CUDA11.3. Versi CUDNN juga mesti sepadan dengan versi CUDA. Sebelum memilih versi PyTorch, pastikan anda mengesahkan bahawa versi CUDA dan CUDNN yang serasi telah dipasang. Versi Python: Cawangan Rasmi Pytorch

Python cemerlang dalam automasi, skrip, dan pengurusan tugas. 1) Automasi: Sandaran fail direalisasikan melalui perpustakaan standard seperti OS dan Shutil. 2) Penulisan Skrip: Gunakan Perpustakaan Psutil untuk memantau sumber sistem. 3) Pengurusan Tugas: Gunakan perpustakaan jadual untuk menjadualkan tugas. Kemudahan penggunaan Python dan sokongan perpustakaan yang kaya menjadikannya alat pilihan di kawasan ini.
