


Apakah beberapa sumber untuk mempelajari pengaturcaraan Python lanjutan?
Permintaan untuk Python sebagai bahasa pengaturcaraan mendorong sumbernya yang kaya untuk mempelajari aspek yang berbeza. Walaupun pemula mempunyai pelbagai tutorial dan panduan untuk membantu mereka bermula, pelajar lanjutan sering bergelut untuk mencari sumber yang memenuhi keperluan khusus mereka. Dalam artikel ini, kami akan meneroka satu siri sumber yang direka untuk meningkatkan kemahiran Python anda, meliputi topik seperti ciri bahasa lanjutan, corak reka bentuk, pengoptimuman prestasi dan banyak lagi.
Ciri bahasa Python lanjutan
Untuk memanfaatkan Python sepenuhnya, adalah penting untuk menguasai ciri bahasa lanjutannya. Ciri ini membolehkan kod yang cekap, boleh dibaca dan boleh diselenggara.
a) Fluent Python oleh Luciano Ramalho
"Fluent Python" ialah buku yang sangat disyorkan untuk pembangun Python berpengalaman yang ingin mendapatkan pemahaman yang lebih mendalam tentang bahasa tersebut. Buku ini merangkumi topik lanjutan seperti kelas meta, deskriptor, penjana dan coroutine dengan penjelasan yang jelas dan contoh praktikal.
b) Corak Python 3, Resipi dan Idiom oleh Bruce Eckel dan Brian Will
Buku terbuka ini memberikan pandangan mendalam tentang ciri lanjutan dan amalan terbaik Python Ia merangkumi topik seperti reka bentuk program, penyelenggara, pengurus konteks dan pelbagai corak dan jargon reka bentuk.
c) "Effective Python" oleh Brett Slatkin
"Effective Python" ialah koleksi 90 garis panduan khusus yang boleh diambil tindakan untuk membantu anda menulis kod Python yang lebih baik Buku ini merangkumi pelbagai topik lanjutan, termasuk concurrency, metaclass dan modul, serta menyediakan petua praktikal untuk meningkatkan kebolehbacaan dan kecekapan kod.
Corak Reka Bentuk Python
Corak reka bentuk ialah penyelesaian yang boleh digunakan semula kepada masalah biasa yang timbul dalam reka bentuk perisian Mempelajari corak ini membantu anda menulis kod yang lebih cekap dan boleh diselenggara.
a) Corak Reka Bentuk Ular Sawa (Gang of Four (GoF))
"Corak Reka Bentuk: Elemen Perisian Berorientasikan Objek Boleh Digunakan Semula" oleh Gang of Four (GoF) adalah klasik dalam kesusasteraan reka bentuk perisian Walaupun contoh dalam C++, konsep tersebut boleh digunakan untuk Python dan boleh disesuaikan dengan a usaha sikit.
b) Corak Rekaan Sawa oleh Vaskaran Sarcar
Buku ini menawarkan panduan komprehensif untuk mereka bentuk corak yang disesuaikan khusus untuk pembangun Python Ia merangkumi 23 corak GoF klasik, bersama-sama dengan 16 corak tambahan yang berkaitan dengan Python Setiap corak diterangkan menggunakan contoh kehidupan sebenar dan termasuk latihan praktikal.
c) Corak Reka Bentuk dalam Python oleh Alex Martelli
Terjemahan bahasa Cina ialah:c) Corak Reka Bentuk dalam Python yang ditulis oleh Alex Martelli
Pembentangan PyCon Alex Martelli mengenai corak reka bentuk dalam Python ialah sumber yang berharga untuk mereka yang lebih suka pembelajaran berasaskan video Martelli, pakar Python yang dihormati, membincangkan pelbagai corak dan menunjukkan pelaksanaannya dalam Python.
Pengoptimuman prestasi Python
Apabila projek Python anda berkembang dalam saiz dan kerumitan, pengoptimuman prestasi menjadi kritikal. Sumber berikut akan membantu anda menulis kod yang lebih pantas dan cekap.
a) Python Berprestasi Tinggi oleh Micha Gorelick dan Ian Ozsvald
Buku ini memfokus pada menggunakan pelbagai kaedah analisis, penanda aras dan pengoptimuman untuk meningkatkan kecekapan pelaksanaan kod Python anda. Ia merangkumi topik seperti concurrency, paralelisme, dan pengurusan memori.
b) Python Speed oleh Jake Vanderplas
Pembentangan PyCon Jake Vanderplas, "Losing Your Loops: Fast Numerical Computing with NumPy," memberikan pengenalan yang sangat baik untuk mengoptimumkan pengiraan berangka dalam Python Dia menunjukkan cara memanfaatkan NumPy dan perpustakaan lain untuk mencapai peningkatan prestasi yang ketara.
c) Petua Prestasi Python oleh Raymond Hettinger
Raymond Hettinger, pembangun teras Python, berkongsi petua pengoptimuman prestasi yang berharga dalam ceramahnya bertajuk "Transforming Code into Elegant, Idiomatic Python". Beliau menumpukan pada mengoptimumkan kod untuk kebolehbacaan, kebolehselenggaraan dan kelajuan, dan menekankan kepentingan ciri dan simpulan bahasa terbina dalam Python.
Perpustakaan dan Rangka Kerja Python Terperinci
Meluaskan pengetahuan anda tentang perpustakaan dan rangka kerja Python lanjutan adalah penting untuk menangani projek yang kompleks dan menyelesaikan masalah khusus domain.
a) NumPy, SciPy dan Pandas
Perpustakaan ini membentuk asas kepada sains data Python dan ekosistem pengkomputeran berangka. NumPy menyediakan alatan berkuasa untuk bekerja dengan tatasusunan berbilang dimensi, manakala SciPy memperluaskan keupayaan pengkomputeran saintifik NumPy. Pandas ialah pustaka pemprosesan dan analisis data yang berkuasa. Untuk mengetahui tentang perpustakaan ini, anda boleh merujuk kepada "Buku Panduan Sains Data Python" Jake Vanderplas dan dokumentasi rasmi setiap perpustakaan.
b) TensorFlow dan PyTorch
TensorFlow dan PyTorch ialah perpustakaan popular untuk pembelajaran mesin dan pembelajaran mendalam Kedua-dua perpustakaan mempunyai dokumentasi, tutorial dan sokongan komuniti yang meluas untuk membantu anda menyelami topik pembelajaran mesin lanjutan Selain itu, pertimbangkan sumber seperti "Pembelajaran Mendalam dengan Python" oleh François Chollet dan "Pembelajaran Mendalam untuk Pengekod dengan Fastai dan PyTorch" oleh Jeremy Howard dan Sylvain Gugger.
c) Django dan Flask
Django dan Flask ialah rangka kerja web yang popular untuk membina aplikasi web dalam Python Untuk mempelajari pembangunan web lanjutan menggunakan rangka kerja ini, pertimbangkan sumber seperti "Django for Professionals" oleh William S. Vincent, "Flask Web Development" oleh Miguel Grinberg dan dokumentasi rasmi. pada rangka kerja mana-mana ini.
Kesimpulan
Menguasai pengaturcaraan Python lanjutan memerlukan penerokaan semua aspek bahasa, corak reka bentuk, pengoptimuman prestasi dan perpustakaan dan rangka kerja khusus. Dengan memanfaatkan sumber ini dan mengambil bahagian secara aktif dalam projek dunia sebenar, anda boleh meningkatkan kemahiran Python anda dan menyelesaikan masalah kompleks dengan yakin. Semasa anda meneruskan perjalanan Python anda, ingat bahawa pembelajaran ialah proses yang berterusan - kekal ingin tahu dan jangan berhenti meneroka konsep dan teknik baharu.
Atas ialah kandungan terperinci Apakah beberapa sumber untuk mempelajari pengaturcaraan Python lanjutan?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas



PHP dan Python masing -masing mempunyai kelebihan mereka sendiri, dan memilih mengikut keperluan projek. 1.PHP sesuai untuk pembangunan web, terutamanya untuk pembangunan pesat dan penyelenggaraan laman web. 2. Python sesuai untuk sains data, pembelajaran mesin dan kecerdasan buatan, dengan sintaks ringkas dan sesuai untuk pemula.

Fungsi Readdir dalam sistem Debian adalah panggilan sistem yang digunakan untuk membaca kandungan direktori dan sering digunakan dalam pengaturcaraan C. Artikel ini akan menerangkan cara mengintegrasikan Readdir dengan alat lain untuk meningkatkan fungsinya. Kaedah 1: Menggabungkan Program Bahasa C dan Pipeline Pertama, tulis program C untuk memanggil fungsi Readdir dan output hasilnya:#termasuk#termasuk#includeintMain (intargc, char*argv []) {dir*dir; structdirent*entry; if (argc! = 2) {

Untuk memaksimumkan kecekapan pembelajaran Python dalam masa yang terhad, anda boleh menggunakan modul, masa, dan modul Python. 1. Modul DateTime digunakan untuk merakam dan merancang masa pembelajaran. 2. Modul Masa membantu menetapkan kajian dan masa rehat. 3. Modul Jadual secara automatik mengatur tugas pembelajaran mingguan.

Mengkonfigurasi pelayan HTTPS pada sistem Debian melibatkan beberapa langkah, termasuk memasang perisian yang diperlukan, menghasilkan sijil SSL, dan mengkonfigurasi pelayan web (seperti Apache atau Nginx) untuk menggunakan sijil SSL. Berikut adalah panduan asas, dengan mengandaikan anda menggunakan pelayan Apacheweb. 1. Pasang perisian yang diperlukan terlebih dahulu, pastikan sistem anda terkini dan pasang Apache dan OpenSSL: sudoaptDateSudoaptgradesudoaptinsta

Membangunkan plugin Gitlab pada Debian memerlukan beberapa langkah dan pengetahuan tertentu. Berikut adalah panduan asas untuk membantu anda memulakan proses ini. Memasang GitLab terlebih dahulu, anda perlu memasang GitLab pada sistem Debian anda. Anda boleh merujuk kepada manual pemasangan rasmi GitLab. Dapatkan token akses API sebelum melakukan integrasi API, anda perlu mendapatkan token akses API Gitlab terlebih dahulu. Buka papan pemuka Gitlab, cari pilihan "AccessTokens" dalam tetapan pengguna, dan menghasilkan token akses baru. Akan dijana

Apache adalah wira di belakang internet. Ia bukan sahaja pelayan web, tetapi juga platform yang kuat yang menyokong lalu lintas yang besar dan menyediakan kandungan dinamik. Ia memberikan fleksibiliti yang sangat tinggi melalui reka bentuk modular, yang membolehkan pengembangan pelbagai fungsi seperti yang diperlukan. Walau bagaimanapun, modulariti juga membentangkan cabaran konfigurasi dan prestasi yang memerlukan pengurusan yang teliti. Apache sesuai untuk senario pelayan yang memerlukan keperluan yang sangat disesuaikan dan memenuhi keperluan kompleks.

Apache ditulis dalam C. Bahasa ini menyediakan kelajuan, kestabilan, mudah alih, dan akses perkakasan langsung, menjadikannya sesuai untuk pembangunan pelayan web.

PHP dan Python mempunyai kelebihan dan kekurangan mereka sendiri, dan pilihannya bergantung kepada keperluan projek dan keutamaan peribadi. 1.PHP sesuai untuk pembangunan pesat dan penyelenggaraan aplikasi web berskala besar. 2. Python menguasai bidang sains data dan pembelajaran mesin.
