


Bagaimana untuk melaksanakan algoritma keturunan kecerunan dalam Python untuk mencari minima tempatan?
Keturunan kecerunan ialah kaedah pengoptimuman penting dalam pembelajaran mesin, digunakan untuk meminimumkan fungsi kehilangan model. Dalam istilah awam, ia memerlukan berulang kali menukar parameter model sehingga julat nilai ideal yang meminimumkan fungsi kehilangan ditemui. Kaedah ini berfungsi dengan mengambil langkah-langkah kecil ke arah kecerunan negatif fungsi kehilangan, atau lebih khusus, di sepanjang laluan keturunan paling curam. Kadar pembelajaran ialah hiperparameter yang mengawal pertukaran antara kelajuan dan ketepatan algoritma, dan ia mempengaruhi saiz saiz langkah. Banyak kaedah pembelajaran mesin, termasuk regresi linear, regresi logistik dan rangkaian saraf, untuk menamakan beberapa, menggunakan keturunan kecerunan. Aplikasi utamanya ialah latihan model, di mana matlamatnya adalah untuk meminimumkan perbezaan antara nilai jangkaan dan sebenar pembolehubah sasaran. Dalam artikel ini, kita akan melihat pelaksanaan turunan kecerunan dalam Python untuk mencari minima setempat.
Kini tiba masanya untuk melaksanakan keturunan kecerunan dalam Python. Berikut ialah penjelasan asas tentang cara kami melaksanakannya -
Pertama, kami mengimport perpustakaan yang diperlukan.
Tentukan fungsinya dan derivatifnya.
Seterusnya, kami akan menggunakan fungsi penurunan kecerunan.
Selepas menggunakan fungsi, kami akan menetapkan parameter untuk mencari minimum setempat,
Akhir sekali, kami akan merancang output.
Melaksanakan Gradient Descent dalam Python
Import perpustakaan
import numpy as np import matplotlib.pyplot as plt
Kemudian kita takrifkan fungsi f(x) dan terbitannya f'(x) -
def f(x): return x**2 - 4*x + 6 def df(x): return 2*x - 4
F(x) ialah fungsi yang mesti dikurangkan dan df ialah terbitannya (x). Kaedah penurunan kecerunan menggunakan derivatif untuk membimbing dirinya ke arah minimum dengan mendedahkan kecerunan fungsi di sepanjang jalan.
Kemudian tentukan fungsi penurunan kecerunan.
def gradient_descent(initial_x, learning_rate, num_iterations): x = initial_x x_history = [x] for i in range(num_iterations): gradient = df(x) x = x - learning_rate * gradient x_history.append(x) return x, x_history
x, kadar pembelajaran dan bilangan lelaran yang diperlukan dihantar ke fungsi penurunan kecerunan. Untuk menyimpan nilai x selepas setiap lelaran, ia memulakan x kepada nilai asalnya dan menjana senarai kosong. Kaedah kemudiannya melakukan penurunan kecerunan untuk bilangan lelaran yang disediakan, menukar x dalam setiap lelaran mengikut persamaan x = x - kadar pembelajaran * kecerunan. Fungsi ini menjana senarai nilai x untuk setiap lelaran dan nilai akhir x.
Fungsi penurunan kecerunan kini boleh digunakan untuk mencari minimum setempat f(x) -
Contoh
initial_x = 0 learning_rate = 0.1 num_iterations = 50 x, x_history = gradient_descent(initial_x, learning_rate, num_iterations) print("Local minimum: {:.2f}".format(x))
Output
Local minimum: 2.00
Dalam angka ini, x pada mulanya ditetapkan kepada 0, kadar pembelajaran ialah 0.1, dan 50 lelaran dijalankan. Akhir sekali, kami menerbitkan nilai x, yang sepatutnya hampir dengan minimum tempatan pada x=2.
Memplot fungsi f(x) dan nilai x untuk setiap lelaran membolehkan kita melihat proses penurunan kecerunan dalam tindakan -
Contoh
# Create a range of x values to plot x_vals = np.linspace(-1, 5, 100) # Plot the function f(x) plt.plot(x_vals, f(x_vals)) # Plot the values of x at each iteration plt.plot(x_history, f(np.array(x_history)), 'rx') # Label the axes and add a title plt.xlabel('x') plt.ylabel('f(x)') plt.title('Gradient Descent') # Show the plot plt.show()
Output
Kesimpulan
Ringkasnya, untuk mencari minimum setempat bagi sesuatu fungsi, Python menggunakan proses pengoptimuman yang cekap yang dipanggil keturunan kecerunan. Keturunan kecerunan berfungsi dengan mengira derivatif fungsi pada setiap langkah, mengemas kini nilai input berulang kali ke arah penurunan paling curam sehingga nilai terendah dicapai. Melaksanakan keturunan kecerunan dalam Python memerlukan menentukan fungsi yang akan dioptimumkan dan terbitannya, memulakan nilai input dan menentukan kadar pembelajaran dan bilangan lelaran algoritma. Selepas pengoptimuman selesai, kaedah boleh dinilai dengan menjejaki langkahnya ke tahap minimum dan melihat cara ia mencapai matlamat tersebut. Keturunan kecerunan ialah teknik yang berguna dalam pembelajaran mesin dan aplikasi pengoptimuman kerana Python boleh mengendalikan set data yang besar dan fungsi yang kompleks.
Atas ialah kandungan terperinci Bagaimana untuk melaksanakan algoritma keturunan kecerunan dalam Python untuk mencari minima tempatan?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas

PHP terutamanya pengaturcaraan prosedur, tetapi juga menyokong pengaturcaraan berorientasikan objek (OOP); Python menyokong pelbagai paradigma, termasuk pengaturcaraan OOP, fungsional dan prosedur. PHP sesuai untuk pembangunan web, dan Python sesuai untuk pelbagai aplikasi seperti analisis data dan pembelajaran mesin.

PHP sesuai untuk pembangunan web dan prototaip pesat, dan Python sesuai untuk sains data dan pembelajaran mesin. 1.Php digunakan untuk pembangunan web dinamik, dengan sintaks mudah dan sesuai untuk pembangunan pesat. 2. Python mempunyai sintaks ringkas, sesuai untuk pelbagai bidang, dan mempunyai ekosistem perpustakaan yang kuat.

Python lebih sesuai untuk pemula, dengan lengkung pembelajaran yang lancar dan sintaks ringkas; JavaScript sesuai untuk pembangunan front-end, dengan lengkung pembelajaran yang curam dan sintaks yang fleksibel. 1. Sintaks Python adalah intuitif dan sesuai untuk sains data dan pembangunan back-end. 2. JavaScript adalah fleksibel dan digunakan secara meluas dalam pengaturcaraan depan dan pelayan.

Dalam kod VS, anda boleh menjalankan program di terminal melalui langkah -langkah berikut: Sediakan kod dan buka terminal bersepadu untuk memastikan bahawa direktori kod selaras dengan direktori kerja terminal. Pilih arahan Run mengikut bahasa pengaturcaraan (seperti python python your_file_name.py) untuk memeriksa sama ada ia berjalan dengan jayanya dan menyelesaikan kesilapan. Gunakan debugger untuk meningkatkan kecekapan debug.

Kod VS boleh dijalankan pada Windows 8, tetapi pengalaman mungkin tidak hebat. Mula -mula pastikan sistem telah dikemas kini ke patch terkini, kemudian muat turun pakej pemasangan kod VS yang sepadan dengan seni bina sistem dan pasangnya seperti yang diminta. Selepas pemasangan, sedar bahawa beberapa sambungan mungkin tidak sesuai dengan Windows 8 dan perlu mencari sambungan alternatif atau menggunakan sistem Windows yang lebih baru dalam mesin maya. Pasang sambungan yang diperlukan untuk memeriksa sama ada ia berfungsi dengan betul. Walaupun kod VS boleh dilaksanakan pada Windows 8, disyorkan untuk menaik taraf ke sistem Windows yang lebih baru untuk pengalaman dan keselamatan pembangunan yang lebih baik.

PHP berasal pada tahun 1994 dan dibangunkan oleh Rasmuslerdorf. Ia pada asalnya digunakan untuk mengesan pelawat laman web dan secara beransur-ansur berkembang menjadi bahasa skrip sisi pelayan dan digunakan secara meluas dalam pembangunan web. Python telah dibangunkan oleh Guidovan Rossum pada akhir 1980 -an dan pertama kali dikeluarkan pada tahun 1991. Ia menekankan kebolehbacaan dan kesederhanaan kod, dan sesuai untuk pengkomputeran saintifik, analisis data dan bidang lain.

Sambungan kod VS menimbulkan risiko yang berniat jahat, seperti menyembunyikan kod jahat, mengeksploitasi kelemahan, dan melancap sebagai sambungan yang sah. Kaedah untuk mengenal pasti sambungan yang berniat jahat termasuk: memeriksa penerbit, membaca komen, memeriksa kod, dan memasang dengan berhati -hati. Langkah -langkah keselamatan juga termasuk: kesedaran keselamatan, tabiat yang baik, kemas kini tetap dan perisian antivirus.

Kod VS boleh digunakan untuk menulis Python dan menyediakan banyak ciri yang menjadikannya alat yang ideal untuk membangunkan aplikasi python. Ia membolehkan pengguna untuk: memasang sambungan python untuk mendapatkan fungsi seperti penyempurnaan kod, penonjolan sintaks, dan debugging. Gunakan debugger untuk mengesan kod langkah demi langkah, cari dan selesaikan kesilapan. Mengintegrasikan Git untuk Kawalan Versi. Gunakan alat pemformatan kod untuk mengekalkan konsistensi kod. Gunakan alat linting untuk melihat masalah yang berpotensi lebih awal.
