


Bagaimana untuk membina pembantu maya pintar menggunakan Python
Cara menggunakan Python untuk membina pembantu maya pintar
Pengenalan:
Dalam pembangunan teknologi moden, pembantu maya telah menjadi peranan penting dalam kehidupan rakyat. Ia boleh berinteraksi dengan pengguna melalui suara atau teks dan menyediakan pelbagai perkhidmatan seperti peringatan penjadualan, menjawab soalan, memainkan muzik, dsb. Dalam artikel ini, kami akan meneroka cara membina pembantu maya pintar mudah menggunakan Python.
-
Persediaan
Sebelum kita mula, kita perlu memastikan bahawa penterjemah Python dipasang pada sistem. Pada masa yang sama, kami juga perlu memasang beberapa modul yang diperlukan. Kita boleh menggunakan arahan berikut untuk memasang modul yang diperlukan.pip install pyttsx3 pip install SpeechRecognition pip install pyaudio pip install wikipedia
Salin selepas log masuk Teks kepada Ucapan
Menggunakan modul pyttsx3 Python, kita boleh menukar teks kepada pertuturan. Berikut ialah kod sampel yang menukar teks yang diberikan kepada pertuturan dan memainkannya semula.import pyttsx3 def convert_text_to_speech(text): engine = pyttsx3.init() engine.say(text) engine.runAndWait() # 测试代码 convert_text_to_speech("你好,这是一个测试。")
Salin selepas log masukpeech to text
Menggunakan modul SpeechRecognition Python, kita boleh menukar pertuturan kepada teks. Berikut ialah contoh kod yang melaksanakan fungsi memasukkan pertuturan daripada mikrofon dan menukarkannya kepada teks. Modul wikipedia Python boleh digunakan untuk mendapatkan maklumat daripada Wikipedia. Kami boleh menggabungkan pengecaman pertuturan dan modul wikipedia untuk melaksanakan fungsi soal jawab yang mudah. Berikut adalah contoh kod yang boleh digunakan untuk mendapatkan maklumat Wikipedia yang berkaitan dengan mengemukakan soalan.import speech_recognition as sr def convert_speech_to_text(): r = sr.Recognizer() with sr.Microphone() as source: print("请说话:") audio = r.listen(source) try: text = r.recognize_google(audio, language="zh-CN") print("您说的是:", text) except sr.UnknownValueError: print("抱歉,我无法理解您说的话。") except sr.RequestError as e: print("出现错误:", e) # 测试代码 convert_speech_to_text()
Salin selepas log masukKesimpulan:
Dengan menggunakan Python, kita boleh membina pembantu maya pintar yang ringkas. Kami boleh menggunakan keupayaan pengecaman teks ke pertuturan dan pertuturan untuk berinteraksi dengan pengguna. Pada masa yang sama, kita juga boleh menggunakan pelbagai modul untuk mendapatkan maklumat yang berguna, seperti Wikipedia. Dengan pembelajaran dan pembangunan lanjut, kami boleh menambah lebih banyak fungsi dan kecerdasan pada pembantu maya.
Atas ialah kandungan terperinci Bagaimana untuk membina pembantu maya pintar menggunakan Python. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas



PHP dan Python mempunyai kelebihan dan kekurangan mereka sendiri, dan pilihannya bergantung kepada keperluan projek dan keutamaan peribadi. 1.PHP sesuai untuk pembangunan pesat dan penyelenggaraan aplikasi web berskala besar. 2. Python menguasai bidang sains data dan pembelajaran mesin.

Membolehkan pecutan GPU pytorch pada sistem CentOS memerlukan pemasangan cuda, cudnn dan GPU versi pytorch. Langkah-langkah berikut akan membimbing anda melalui proses: Pemasangan CUDA dan CUDNN Tentukan keserasian versi CUDA: Gunakan perintah NVIDIA-SMI untuk melihat versi CUDA yang disokong oleh kad grafik NVIDIA anda. Sebagai contoh, kad grafik MX450 anda boleh menyokong CUDA11.1 atau lebih tinggi. Muat turun dan pasang Cudatoolkit: Lawati laman web rasmi Nvidiacudatoolkit dan muat turun dan pasang versi yang sepadan mengikut versi CUDA tertinggi yang disokong oleh kad grafik anda. Pasang Perpustakaan Cudnn:

Python dan JavaScript mempunyai kelebihan dan kekurangan mereka sendiri dari segi komuniti, perpustakaan dan sumber. 1) Komuniti Python mesra dan sesuai untuk pemula, tetapi sumber pembangunan depan tidak kaya dengan JavaScript. 2) Python berkuasa dalam bidang sains data dan perpustakaan pembelajaran mesin, sementara JavaScript lebih baik dalam perpustakaan pembangunan dan kerangka pembangunan depan. 3) Kedua -duanya mempunyai sumber pembelajaran yang kaya, tetapi Python sesuai untuk memulakan dengan dokumen rasmi, sementara JavaScript lebih baik dengan MDNWebDocs. Pilihan harus berdasarkan keperluan projek dan kepentingan peribadi.

Docker menggunakan ciri -ciri kernel Linux untuk menyediakan persekitaran berjalan yang cekap dan terpencil. Prinsip kerjanya adalah seperti berikut: 1. Cermin digunakan sebagai templat baca sahaja, yang mengandungi semua yang anda perlukan untuk menjalankan aplikasi; 2. Sistem Fail Kesatuan (Unionfs) menyusun pelbagai sistem fail, hanya menyimpan perbezaan, menjimatkan ruang dan mempercepatkan; 3. Daemon menguruskan cermin dan bekas, dan pelanggan menggunakannya untuk interaksi; 4. Ruang nama dan cgroups melaksanakan pengasingan kontena dan batasan sumber; 5. Pelbagai mod rangkaian menyokong interkoneksi kontena. Hanya dengan memahami konsep -konsep teras ini, anda boleh menggunakan Docker dengan lebih baik.

Penyimpanan Objek Minio: Penyebaran berprestasi tinggi di bawah CentOS System Minio adalah prestasi tinggi, sistem penyimpanan objek yang diedarkan yang dibangunkan berdasarkan bahasa Go, serasi dengan Amazons3. Ia menyokong pelbagai bahasa pelanggan, termasuk Java, Python, JavaScript, dan GO. Artikel ini akan memperkenalkan pemasangan dan keserasian minio pada sistem CentOS. Keserasian versi CentOS Minio telah disahkan pada pelbagai versi CentOS, termasuk tetapi tidak terhad kepada: CentOS7.9: Menyediakan panduan pemasangan lengkap yang meliputi konfigurasi kluster, penyediaan persekitaran, tetapan fail konfigurasi, pembahagian cakera, dan mini

Latihan yang diedarkan Pytorch pada sistem CentOS memerlukan langkah -langkah berikut: Pemasangan Pytorch: Premisnya ialah Python dan PIP dipasang dalam sistem CentOS. Bergantung pada versi CUDA anda, dapatkan arahan pemasangan yang sesuai dari laman web rasmi Pytorch. Untuk latihan CPU sahaja, anda boleh menggunakan arahan berikut: PipinstallToRchTorchVisionTorchaudio Jika anda memerlukan sokongan GPU, pastikan versi CUDA dan CUDNN yang sama dipasang dan gunakan versi pytorch yang sepadan untuk pemasangan. Konfigurasi Alam Sekitar Teragih: Latihan yang diedarkan biasanya memerlukan pelbagai mesin atau mesin berbilang mesin tunggal. Tempat

Apabila memasang pytorch pada sistem CentOS, anda perlu dengan teliti memilih versi yang sesuai dan pertimbangkan faktor utama berikut: 1. Keserasian Persekitaran Sistem: Sistem Operasi: Adalah disyorkan untuk menggunakan CentOS7 atau lebih tinggi. CUDA dan CUDNN: Versi Pytorch dan versi CUDA berkait rapat. Sebagai contoh, Pytorch1.9.0 memerlukan CUDA11.1, manakala Pytorch2.0.1 memerlukan CUDA11.3. Versi CUDNN juga mesti sepadan dengan versi CUDA. Sebelum memilih versi PyTorch, pastikan anda mengesahkan bahawa versi CUDA dan CUDNN yang serasi telah dipasang. Versi Python: Cawangan Rasmi Pytorch

CentOS Memasang Nginx memerlukan mengikuti langkah-langkah berikut: memasang kebergantungan seperti alat pembangunan, pcre-devel, dan openssl-devel. Muat turun Pakej Kod Sumber Nginx, unzip dan menyusun dan memasangnya, dan tentukan laluan pemasangan sebagai/usr/local/nginx. Buat pengguna Nginx dan kumpulan pengguna dan tetapkan kebenaran. Ubah suai fail konfigurasi nginx.conf, dan konfigurasikan port pendengaran dan nama domain/alamat IP. Mulakan perkhidmatan Nginx. Kesalahan biasa perlu diberi perhatian, seperti isu ketergantungan, konflik pelabuhan, dan kesilapan fail konfigurasi. Pengoptimuman prestasi perlu diselaraskan mengikut keadaan tertentu, seperti menghidupkan cache dan menyesuaikan bilangan proses pekerja.
