


Pembelajaran Mesin JavaScript: Bina Model ML dalam Penyemak Imbas
Pembelajaran mesin (ML) telah merevolusikan pelbagai industri, membolehkan komputer belajar dan meramal berdasarkan corak dan data. Secara tradisinya, model pembelajaran mesin dibina dan dilaksanakan pada pelayan atau mesin berprestasi tinggi. Walau bagaimanapun, seiring kemajuan teknologi web, kini boleh membina dan menggunakan model ML secara langsung dalam penyemak imbas menggunakan JavaScript.
Dalam artikel ini, kami akan meneroka dunia pembelajaran mesin yang menarik dalam JavaScript dan mempelajari cara membina model ML yang boleh dijalankan dalam penyemak imbas.
Ketahui tentang pembelajaran mesin
Pembelajaran mesin ialah subset kecerdasan buatan (AI) yang memfokuskan pada mencipta model yang boleh belajar daripada data dan membuat ramalan atau keputusan. Terdapat dua jenis utama pembelajaran mesin: pembelajaran diselia dan pembelajaran tanpa penyeliaan.
Pembelajaran diselia melibatkan latihan model pada data berlabel, di mana ciri input dan nilai output yang sepadan diketahui. Model ini mempelajari corak daripada data berlabel untuk membuat ramalan pada data baharu yang tidak kelihatan.
Pembelajaran tanpa pengawasan, sebaliknya, berurusan dengan data tidak berlabel. Model ini menemui corak dan struktur tersembunyi dalam data tanpa sebarang label yang dipratentukan.
Perpustakaan Pembelajaran Mesin JavaScript
Untuk bermula dengan pembelajaran mesin JavaScript, ikut langkah ini -
Langkah 1: Pasang Node.js
Node.js ialah persekitaran masa jalan JavaScript yang membolehkan kami menjalankan kod JavaScript di luar pelayar web. Ia menyediakan alatan dan perpustakaan yang diperlukan untuk menggunakan TensorFlow.js.
Langkah 2: Sediakan projek
Selepas memasang Node.js, buka editor kod pilihan anda dan buat direktori baharu untuk projek ML anda. Navigasi ke direktori projek menggunakan baris arahan atau terminal.
Langkah 3: Mulakan projek Node.js
Dalam baris arahan atau terminal, jalankan arahan berikut untuk memulakan projek Node.js baharu -
npm init -y
Arahan ini mencipta fail package.json baharu untuk mengurus kebergantungan dan konfigurasi projek.
Langkah 4: Pasang TensorFlow.js
Untuk memasang TensorFlow.js, jalankan arahan berikut dalam baris arahan atau terminal -
npm install @tensorflow/tfjs
Langkah 5: Mula membina model pembelajaran mesin
Setelah projek anda disediakan dan TensorFlow.js dipasang, anda boleh mula membina model pembelajaran mesin dalam penyemak imbas. Anda boleh membuat fail JavaScript baharu, mengimport TensorFlow.js dan menggunakan APInya untuk mentakrif, melatih model ML dan membuat ramalan.
Mari kita menyelami beberapa contoh kod untuk mengetahui cara menggunakan TensorFlow.js dan membina model pembelajaran mesin dalam JavaScript.
Contoh 1: Regresi Linear
Regresi linear ialah algoritma pembelajaran diselia yang digunakan untuk meramalkan nilai output berterusan berdasarkan ciri input.
Mari lihat cara melaksanakan regresi linear menggunakan TensorFlow.js.
// Import TensorFlow.js library import * as tf from '@tensorflow/tfjs'; // Define input features and output values const inputFeatures = tf.tensor2d([[1], [2], [3], [4], [5]], [5, 1]); const outputValues = tf.tensor2d([[2], [4], [6], [8], [10]], [5, 1]); // Define the model architecture const model = tf.sequential(); model.add(tf.layers.dense({ units: 1, inputShape: [1] })); // Compile the model model.compile({ optimizer: 'sgd', loss: 'meanSquaredError' }); // Train the model model.fit(inputFeatures, outputValues, { epochs: 100 }).then(() => { // Make predictions const predictions = model.predict(inputFeatures); // Print predictions predictions.print(); });
Arahan
Dalam contoh ini, kami mula-mula mengimport perpustakaan TensorFlow.js. Kemudian, kami mentakrifkan ciri input dan nilai output sebagai tensor. Seterusnya, kami mencipta model berjujukan dan menambah lapisan padat dengan satu unit. Kami menyusun model menggunakan pengoptimum "sgd" dan fungsi kehilangan "meanSquaredError". Akhir sekali, kami melatih model untuk 100 zaman dan membuat ramalan tentang ciri input. Nilai output yang diramalkan dicetak ke konsol.
Output
Tensor [2.2019906], [4.124609 ], [6.0472274], [7.9698458], [9.8924646]]
Contoh 2: Analisis Sentimen
Analisis sentimen ialah aplikasi popular pembelajaran mesin yang melibatkan analisis data teks untuk menentukan emosi atau nada emosi yang dinyatakan dalam teks. Kita boleh menggunakan TensorFlow.js untuk membina model analisis sentimen yang meramalkan sama ada teks tertentu mempunyai sentimen positif atau negatif.
Pertimbangkan kod yang ditunjukkan di bawah.
// Import TensorFlow.js library import * as tf from '@tensorflow/tfjs'; import '@tensorflow/tfjs-node'; // Required for Node.js environment // Define training data const trainingData = [ { text: 'I love this product!', sentiment: 'positive' }, { text: 'This is a terrible experience.', sentiment: 'negative' }, { text: 'The movie was amazing!', sentiment: 'positive' }, // Add more training data... ]; // Prepare training data const texts = trainingData.map(item => item.text); const labels = trainingData.map(item => (item.sentiment === 'positive' ? 1 : 0)); // Tokenize and preprocess the texts const tokenizedTexts = texts.map(text => text.toLowerCase().split(' ')); const wordIndex = new Map(); let currentIndex = 1; const sequences = tokenizedTexts.map(tokens => { return tokens.map(token => { if (!wordIndex.has(token)) { wordIndex.set(token, currentIndex); currentIndex++; } return wordIndex.get(token); }); }); // Pad sequences const maxLength = sequences.reduce((max, seq) => Math.max(max, seq.length), 0); const paddedSequences = sequences.map(seq => { if (seq.length < maxLength) { return seq.concat(new Array(maxLength - seq.length).fill(0)); } return seq; }); // Convert to tensors const paddedSequencesTensor = tf.tensor2d(paddedSequences); const labelsTensor = tf.tensor1d(labels); // Define the model architecture const model = tf.sequential(); model.add(tf.layers.embedding({ inputDim: currentIndex, outputDim: 16, inputLength: maxLength })); model.add(tf.layers.flatten()); model.add(tf.layers.dense({ units: 1, activation: 'sigmoid' })); // Compile the model model.compile({ optimizer: 'adam', loss: 'binaryCrossentropy', metrics: ['accuracy'] }); // Train the model model.fit(paddedSequencesTensor, labelsTensor, { epochs: 10 }).then(() => { // Make predictions const testText = 'This product exceeded my expectations!'; const testTokens = testText.toLowerCase().split(' '); const testSequence = testTokens.map(token => { if (wordIndex.has(token)) { return wordIndex.get(token); } return 0; }); const paddedTestSequence = testSequence.length < maxLength ? testSequence.concat(new Array(maxLength - testSequence.length).fill(0)) : testSequence; const testSequenceTensor = tf.tensor2d([paddedTestSequence]); const prediction = model.predict(testSequenceTensor); const sentiment = prediction.dataSync()[0] > 0.5 ? 'positive' : 'negative'; // Print the sentiment prediction console.log(`The sentiment of "${testText}" is ${sentiment}.`); });
Output
Epoch 1 / 10 eta=0.0 ========================================================================> 14ms 4675us/step - acc=0.00 loss=0.708 Epoch 2 / 10 eta=0.0 ========================================================================> 4ms 1428us/step - acc=0.667 loss=0.703 Epoch 3 / 10 eta=0.0 ========================================================================> 5ms 1733us/step - acc=0.667 loss=0.697 Epoch 4 / 10 eta=0.0 ========================================================================> 4ms 1419us/step - acc=0.667 loss=0.692 Epoch 5 / 10 eta=0.0 ========================================================================> 6ms 1944us/step - acc=0.667 loss=0.686 Epoch 6 / 10 eta=0.0 ========================================================================> 5ms 1558us/step - acc=0.667 loss=0.681 Epoch 7 / 10 eta=0.0 ========================================================================> 5ms 1513us/step - acc=0.667 loss=0.675 Epoch 8 / 10 eta=0.0 ========================================================================> 3ms 1057us/step - acc=1.00 loss=0.670 Epoch 9 / 10 eta=0.0 ========================================================================> 5ms 1745us/step - acc=1.00 loss=0.665 Epoch 10 / 10 eta=0.0 ========================================================================> 4ms 1439us/step - acc=1.00 loss=0.659 The sentiment of "This product exceeded my expectations!" is positive.
Atas ialah kandungan terperinci Pembelajaran Mesin JavaScript: Bina Model ML dalam Penyemak Imbas. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas



Artikel membincangkan membuat, menerbitkan, dan mengekalkan perpustakaan JavaScript, memberi tumpuan kepada perancangan, pembangunan, ujian, dokumentasi, dan strategi promosi.

Artikel ini membincangkan strategi untuk mengoptimumkan prestasi JavaScript dalam pelayar, memberi tumpuan kepada mengurangkan masa pelaksanaan dan meminimumkan kesan pada kelajuan beban halaman.

Soalan dan penyelesaian yang sering ditanya untuk percetakan tiket kertas terma depan dalam pembangunan front-end, percetakan tiket adalah keperluan umum. Walau bagaimanapun, banyak pemaju sedang melaksanakan ...

Artikel ini membincangkan debugging JavaScript yang berkesan menggunakan alat pemaju pelayar, memberi tumpuan kepada menetapkan titik putus, menggunakan konsol, dan menganalisis prestasi.

Tidak ada gaji mutlak untuk pemaju Python dan JavaScript, bergantung kepada kemahiran dan keperluan industri. 1. Python boleh dibayar lebih banyak dalam sains data dan pembelajaran mesin. 2. JavaScript mempunyai permintaan yang besar dalam perkembangan depan dan stack penuh, dan gajinya juga cukup besar. 3. Faktor mempengaruhi termasuk pengalaman, lokasi geografi, saiz syarikat dan kemahiran khusus.

Artikel ini menerangkan cara menggunakan peta sumber untuk debug JavaScript minifikasi dengan memetakannya kembali ke kod asal. Ia membincangkan membolehkan peta sumber, menetapkan titik putus, dan menggunakan alat seperti Chrome Devtools dan Webpack.

Perbincangan mendalam mengenai punca-punca utama perbezaan dalam output konsol.log. Artikel ini akan menganalisis perbezaan hasil output fungsi Console.log dalam sekeping kod dan menerangkan sebab -sebab di belakangnya. � ...

Sebaik sahaja anda telah menguasai tutorial TypeScript peringkat kemasukan, anda harus dapat menulis kod anda sendiri dalam IDE yang menyokong TypeScript dan menyusunnya ke dalam JavaScript. Tutorial ini akan menyelam ke dalam pelbagai jenis data dalam TypeScript. JavaScript mempunyai tujuh jenis data: null, undefined, boolean, nombor, rentetan, simbol (diperkenalkan oleh ES6) dan objek. Typescript mentakrifkan lebih banyak jenis atas dasar ini, dan tutorial ini akan meliputi semuanya secara terperinci. Jenis data null Seperti JavaScript, Null dalam TypeScript
