


'Portal Kawalan Adegan: Teleportasi Objek Empat dalam satu, Dihantar & Dihasilkan Semut'
Dalam operasi pengeditan imej biasa, sintesis imej merujuk kepada proses menggabungkan objek latar depan satu imej dengan imej latar belakang yang lain untuk menghasilkan imej komposit. Imej gabungan secara visual serupa dengan memindahkan objek latar depan dari satu imej ke imej latar belakang yang lain, seperti yang ditunjukkan di bawah

Sintesis imej digunakan secara meluas dalam penciptaan seni, reka bentuk poster, e-dagang, realiti maya, penambahan data dan bidang lain
Mungkin terdapat banyak masalah dalam imej komposit yang diperolehi dengan potong dan tampal ringkas. Dalam kerja penyelidikan terdahulu, sintesis imej memperoleh subtugas yang berbeza untuk menyelesaikan submasalah yang berbeza masing-masing. Pengadunan imej, sebagai contoh, bertujuan untuk menyelesaikan sempadan luar tabii antara latar depan dan latar belakang. Pengharmonian imej bertujuan untuk melaraskan pencahayaan latar depan supaya ia selaras dengan latar belakang. Pelarasan perspektif bertujuan untuk melaraskan pose latar depan supaya sepadan dengan latar belakang. Peletakan objek bertujuan untuk meramalkan lokasi, saiz dan sudut perspektif yang sesuai untuk objek latar depan. Penjanaan bayang-bayang bertujuan untuk menghasilkan bayang-bayang yang munasabah untuk objek latar depan di latar belakang
Seperti yang ditunjukkan dalam rajah di bawah, kerja penyelidikan terdahulu melaksanakan sub-tugas di atas secara bersiri atau selari untuk mendapatkan imej sintesis yang realistik dan semula jadi . Dalam rangka kerja bersiri, kami boleh melaksanakan beberapa subtugas secara terpilih mengikut keperluan sebenar
Dalam rangka kerja selari, kaedah yang popular pada masa ini ialah menggunakan model resapan. Ia menerima imej latar belakang dengan kotak sempadan latar depan dan imej objek latar depan sebagai input dan secara langsung menjana imej komposit akhir. Ini boleh menjadikan objek latar depan dan imej latar belakang digabungkan dengan lancar, kesan pencahayaan dan bayang-bayang adalah munasabah, dan postur disesuaikan dengan latar belakang
Rangka kerja selari ini adalah bersamaan dengan melaksanakan berbilang subtugas pada masa yang sama dan tidak boleh. laksanakan beberapa subtugas secara terpilih. Tugas itu tidak boleh dikawal dan mungkin membawa perubahan yang tidak perlu atau tidak munasabah pada postur atau warna objek latar depan
Apa yang perlu ditulis semula ialah:


Seterusnya, kami menunjukkan lebih banyak hasil daripada empat versi kaedah kami (0,0), (1,0), (0,1), (1,1). Dapat dilihat bahawa apabila menggunakan vektor penunjuk yang berbeza, kaedah kami boleh melaraskan secara selektif beberapa sifat objek latar depan, mengawal kesan imej komposit dengan berkesan, dan memenuhi keperluan pengguna yang berbeza.

Apa yang perlu kita tulis semula ialah: Apakah struktur model yang boleh merealisasikan empat fungsi? Kaedah kami menggunakan struktur model berikut Input model termasuk imej latar belakang dengan kotak sempadan latar depan dan imej objek latar depan. objek latar depan dan ciri tempatan, dan pertama menggabungkan ciri global dan kemudian ciri tempatan. Semasa proses gabungan tempatan, kami menggunakan peta ciri latar depan yang dijajarkan untuk modulasi ciri bagi mencapai pemeliharaan butiran yang lebih baik. Pada masa yang sama, vektor penunjuk digunakan dalam kedua-dua gabungan global dan gabungan tempatan untuk mengawal sepenuhnya sifat objek latar depan
Kami menggunakan algoritma resapan stabil yang telah terlatih untuk melatih model berdasarkan 1.9 juta imej daripada OpenImage. Untuk melatih empat subtugas secara serentak, kami mereka bentuk satu set pemprosesan data dan proses peningkatan. Untuk butiran tentang data dan latihan, sila lihat kertas kerja

Kaedah kami lebih baik untuk mengekalkan butiran latar depan Perincian, lengkapkan objek latar depan yang tidak lengkap, dan laraskan pencahayaan, postur dan penyesuaian objek latar depan ke latar belakang
Kerja ini adalah percubaan pertama untuk sintesis imej yang boleh dikawal dan masih banyak kelemahan, bagaimanapun, prestasi model tidak stabil dan cukup teguh. Di samping itu, sebagai tambahan kepada pencahayaan dan postur, sifat objek latar depan boleh diperhalusi lagi Bagaimana untuk mencapai sintesis imej terkawal yang lebih halus adalah tugas yang lebih mencabar
Yang, Gu, Zhang, Zhang, Chen, Sun, Chen, Wen (2023). Penyuntingan imej berasaskan contoh dan model penyebaran. Dalam CVPR
[2] Song Yongzhong, Zhang Zhi, Lin Zhilong, Cohen, S. D., Price, B. L., Zhang Jing, Jin Suying, Arriaga, D. G. 2023. ObjectStitch: Sintesis objek generatif. Dalam CVPR
Atas ialah kandungan terperinci 'Portal Kawalan Adegan: Teleportasi Objek Empat dalam satu, Dihantar & Dihasilkan Semut'. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas



Dalam pembuatan moden, pengesanan kecacatan yang tepat bukan sahaja kunci untuk memastikan kualiti produk, tetapi juga teras untuk meningkatkan kecekapan pengeluaran. Walau bagaimanapun, set data pengesanan kecacatan sedia ada selalunya tidak mempunyai ketepatan dan kekayaan semantik yang diperlukan untuk aplikasi praktikal, menyebabkan model tidak dapat mengenal pasti kategori atau lokasi kecacatan tertentu. Untuk menyelesaikan masalah ini, pasukan penyelidik terkemuka yang terdiri daripada Universiti Sains dan Teknologi Hong Kong Guangzhou dan Teknologi Simou telah membangunkan set data "DefectSpectrum" secara inovatif, yang menyediakan anotasi berskala besar yang kaya dengan semantik bagi kecacatan industri. Seperti yang ditunjukkan dalam Jadual 1, berbanding set data industri lain, set data "DefectSpectrum" menyediakan anotasi kecacatan yang paling banyak (5438 sampel kecacatan) dan klasifikasi kecacatan yang paling terperinci (125 kategori kecacatan

Komuniti LLM terbuka ialah era apabila seratus bunga mekar dan bersaing Anda boleh melihat Llama-3-70B-Instruct, QWen2-72B-Instruct, Nemotron-4-340B-Instruct, Mixtral-8x22BInstruct-v0.1 dan banyak lagi. model yang cemerlang. Walau bagaimanapun, berbanding dengan model besar proprietari yang diwakili oleh GPT-4-Turbo, model terbuka masih mempunyai jurang yang ketara dalam banyak bidang. Selain model umum, beberapa model terbuka yang mengkhusus dalam bidang utama telah dibangunkan, seperti DeepSeek-Coder-V2 untuk pengaturcaraan dan matematik, dan InternVL untuk tugasan bahasa visual.

Editor |KX Sehingga hari ini, perincian dan ketepatan struktur yang ditentukan oleh kristalografi, daripada logam ringkas kepada protein membran yang besar, tidak dapat ditandingi oleh mana-mana kaedah lain. Walau bagaimanapun, cabaran terbesar, yang dipanggil masalah fasa, kekal mendapatkan maklumat fasa daripada amplitud yang ditentukan secara eksperimen. Penyelidik di Universiti Copenhagen di Denmark telah membangunkan kaedah pembelajaran mendalam yang dipanggil PhAI untuk menyelesaikan masalah fasa kristal Rangkaian saraf pembelajaran mendalam yang dilatih menggunakan berjuta-juta struktur kristal tiruan dan data pembelauan sintetik yang sepadan boleh menghasilkan peta ketumpatan elektron yang tepat. Kajian menunjukkan bahawa kaedah penyelesaian struktur ab initio berasaskan pembelajaran mendalam ini boleh menyelesaikan masalah fasa pada resolusi hanya 2 Angstrom, yang bersamaan dengan hanya 10% hingga 20% daripada data yang tersedia pada resolusi atom, manakala Pengiraan ab initio tradisional

Bagi AI, Olimpik Matematik tidak lagi menjadi masalah. Pada hari Khamis, kecerdasan buatan Google DeepMind menyelesaikan satu kejayaan: menggunakan AI untuk menyelesaikan soalan sebenar IMO Olimpik Matematik Antarabangsa tahun ini, dan ia hanya selangkah lagi untuk memenangi pingat emas. Pertandingan IMO yang baru berakhir minggu lalu mempunyai enam soalan melibatkan algebra, kombinatorik, geometri dan teori nombor. Sistem AI hibrid yang dicadangkan oleh Google mendapat empat soalan dengan betul dan memperoleh 28 mata, mencapai tahap pingat perak. Awal bulan ini, profesor UCLA, Terence Tao baru sahaja mempromosikan Olimpik Matematik AI (Anugerah Kemajuan AIMO) dengan hadiah berjuta-juta dolar Tanpa diduga, tahap penyelesaian masalah AI telah meningkat ke tahap ini sebelum Julai. Lakukan soalan secara serentak pada IMO Perkara yang paling sukar untuk dilakukan dengan betul ialah IMO, yang mempunyai sejarah terpanjang, skala terbesar dan paling negatif

Editor |. ScienceAI Berdasarkan data klinikal yang terhad, beratus-ratus algoritma perubatan telah diluluskan. Para saintis sedang membahaskan siapa yang harus menguji alat dan cara terbaik untuk melakukannya. Devin Singh menyaksikan seorang pesakit kanak-kanak di bilik kecemasan mengalami serangan jantung semasa menunggu rawatan untuk masa yang lama, yang mendorongnya untuk meneroka aplikasi AI untuk memendekkan masa menunggu. Menggunakan data triage daripada bilik kecemasan SickKids, Singh dan rakan sekerja membina satu siri model AI untuk menyediakan potensi diagnosis dan mengesyorkan ujian. Satu kajian menunjukkan bahawa model ini boleh mempercepatkan lawatan doktor sebanyak 22.3%, mempercepatkan pemprosesan keputusan hampir 3 jam bagi setiap pesakit yang memerlukan ujian perubatan. Walau bagaimanapun, kejayaan algoritma kecerdasan buatan dalam penyelidikan hanya mengesahkan perkara ini

Pada tahun 2023, hampir setiap bidang AI berkembang pada kelajuan yang tidak pernah berlaku sebelum ini. Pada masa yang sama, AI sentiasa menolak sempadan teknologi trek utama seperti kecerdasan yang terkandung dan pemanduan autonomi. Di bawah trend berbilang modal, adakah status Transformer sebagai seni bina arus perdana model besar AI akan digoncang? Mengapakah penerokaan model besar berdasarkan seni bina MoE (Campuran Pakar) menjadi trend baharu dalam industri? Bolehkah Model Penglihatan Besar (LVM) menjadi satu kejayaan baharu dalam penglihatan umum? ...Daripada surat berita ahli PRO 2023 laman web ini yang dikeluarkan dalam tempoh enam bulan lalu, kami telah memilih 10 tafsiran khas yang menyediakan analisis mendalam tentang aliran teknologi dan perubahan industri dalam bidang di atas untuk membantu anda mencapai matlamat anda dalam bidang baharu. tahun. Tafsiran ini datang dari Week50 2023

Editor |ScienceAI Question Answering (QA) set data memainkan peranan penting dalam mempromosikan penyelidikan pemprosesan bahasa semula jadi (NLP). Set data QA berkualiti tinggi bukan sahaja boleh digunakan untuk memperhalusi model, tetapi juga menilai dengan berkesan keupayaan model bahasa besar (LLM), terutamanya keupayaan untuk memahami dan menaakul tentang pengetahuan saintifik. Walaupun pada masa ini terdapat banyak set data QA saintifik yang meliputi bidang perubatan, kimia, biologi dan bidang lain, set data ini masih mempunyai beberapa kekurangan. Pertama, borang data adalah agak mudah, kebanyakannya adalah soalan aneka pilihan. Ia mudah dinilai, tetapi mengehadkan julat pemilihan jawapan model dan tidak dapat menguji sepenuhnya keupayaan model untuk menjawab soalan saintifik. Sebaliknya, Soal Jawab terbuka

Editor |. KX Retrosynthesis ialah tugas kritikal dalam penemuan ubat dan sintesis organik, dan AI semakin digunakan untuk mempercepatkan proses. Kaedah AI sedia ada mempunyai prestasi yang tidak memuaskan dan kepelbagaian terhad. Dalam amalan, tindak balas kimia sering menyebabkan perubahan molekul tempatan, dengan pertindihan yang besar antara bahan tindak balas dan produk. Diilhamkan oleh ini, pasukan Hou Tingjun di Universiti Zhejiang mencadangkan untuk mentakrifkan semula ramalan retrosintetik satu langkah sebagai tugas penyuntingan rentetan molekul, secara berulang menapis rentetan molekul sasaran untuk menghasilkan sebatian prekursor. Dan model retrosintetik berasaskan penyuntingan EditRetro dicadangkan, yang boleh mencapai ramalan berkualiti tinggi dan pelbagai. Eksperimen yang meluas menunjukkan bahawa model itu mencapai prestasi cemerlang pada set data penanda aras standard USPTO-50 K, dengan ketepatan 1 teratas 60.8%.
