Jadual Kandungan
Contoh 6
Output
Kesimpulan
Rumah pembangunan bahagian belakang Tutorial Python Bagaimana untuk mengira jejak matriks dalam Python menggunakan numpy?

Bagaimana untuk mengira jejak matriks dalam Python menggunakan numpy?

Sep 15, 2023 pm 07:37 PM
python numpy jejak

Bagaimana untuk mengira jejak matriks dalam Python menggunakan numpy?

Mengira surih matriks menggunakan Numpy ialah operasi biasa dalam algebra linear dan boleh digunakan untuk mengekstrak maklumat penting tentang matriks. Jejak matriks ditakrifkan sebagai jumlah unsur pada pepenjuru utama matriks, yang memanjang dari sudut kiri atas ke sudut kanan bawah. Dalam artikel ini, kita akan mempelajari pelbagai cara untuk mengira surih matriks menggunakan perpustakaan NumPy dalam Python.

Sebelum bermula, kami mengimport perpustakaan NumPy dahulu -

import numpy as np
Salin selepas log masuk

Seterusnya, mari tentukan matriks menggunakan fungsi np.array -

A = np.array([[1,2,3], [4,5,6], [7,8,9]])
Salin selepas log masuk

Contoh 1

Untuk mengira jejak matriks ini, kita boleh menggunakan fungsi np.trace dalam NumPy

import numpy as np
A = np.array([[1,2,3], [4,5,6], [7,8,9]])
trace = np.trace(A)
print(trace)
Salin selepas log masuk

Output

15
Salin selepas log masuk
Salin selepas log masuk
Fungsi

np.trace mengambil satu hujah, iaitu matriks yang surihnya ingin kita kira. Ia mengembalikan jejak matriks sebagai nilai skalar.

Contoh 2

Sebagai alternatif, kita juga boleh menggunakan fungsi jumlah untuk mengira surih matriks dan mengindeks unsur pada pepenjuru utama -

import numpy as np
A = np.array([[1,2,3], [4,5,6], [7,8,9]])
trace = sum(A[i][i] for i in range(A.shape[0]))
print(trace)
Salin selepas log masuk

Output

15
Salin selepas log masuk
Salin selepas log masuk

Di sini, kami menggunakan sifat bentuk matriks untuk menentukan dimensinya dan menggunakan gelung for untuk mengulangi elemen pada pepenjuru utama.

Perlu diingatkan bahawa surih matriks hanya ditakrifkan untuk matriks segi empat sama, iaitu matriks dengan bilangan baris dan lajur yang sama. Jika anda cuba mengira surih matriks bukan persegi, anda akan mendapat ralat.

Contoh 3

Selain mengira surih matriks, NumPy juga menyediakan beberapa fungsi dan kaedah lain untuk melaksanakan pelbagai operasi algebra linear, seperti mengira penentu, songsang, dan nilai eigen dan vektor eigen bagi sesuatu matriks. Berikut ialah senarai beberapa fungsi algebra linear yang paling berguna yang disediakan oleh NumPy -

  • np.linalg.det - Kira penentu matriks

  • np.linalg.inv - Kira songsangan matriks.

  • np.linalg.eig - Kira nilai eigen dan vektor eigen bagi matriks.

  • np.linalg.solve - Selesaikan sistem persamaan linear yang diwakili oleh matriks

  • np.linalg.lstsq - Selesaikan masalah kuasa dua terkecil linear.

  • np.linalg.cholesky - Kira penguraian Cholesky bagi matriks.

Untuk menggunakan fungsi ini, anda perlu mengimport submodul linalg NumPy−

 import numpy.linalg as LA
Salin selepas log masuk

Contoh 3

Sebagai contoh, untuk mengira penentu matriks menggunakan NumPy, anda boleh menggunakan kod berikut -

import numpy as np
import numpy.linalg as LA
A = np.array([[1,2,3], [4,5,6], [7,8,9]])
det = LA.det(A)
print(det)
Salin selepas log masuk

Output

0.0
Salin selepas log masuk

Fungsi algebra linear NumPy dioptimumkan untuk prestasi, menjadikannya sesuai untuk jadual UI untuk aplikasi pengkomputeran saintifik dan matematik berskala besar. Selain menyediakan rangkaian luas fungsi algebra linear, NumPy juga menyediakan beberapa fungsi kemudahan untuk mencipta dan memanipulasi matriks dan tatasusunan n, seperti np.zeros, np.ones, np.eye dan np.diag.

Contoh 4

Ini adalah contoh cara mencipta matriks sifar menggunakan fungsi np.zeros -

import numpy as np
A = np.zeros((3,3)) # Creates a 3x3 matrix of zeros
print(A)
Salin selepas log masuk

Output

Ini akan mengeluarkan matriks berikut

[[0. 0. 0.]
[0. 0. 0.]
[0. 0. 0.]]
Salin selepas log masuk

Contoh 5

Begitu juga, fungsi np.ones boleh mencipta 1 matriks, dan fungsi np.eye boleh mencipta matriks identiti. Contohnya -

import numpy as np
A = np.ones((3,3)) # Creates a 3x3 matrix of ones
B = np.eye(3) # Creates a 3x3 identity matrix
print(A)
print(B)
Salin selepas log masuk

Output

Ini akan mengeluarkan matriks berikut.

[[1. 1. 1.]
[1. 1. 1.]
[1. 1. 1.]]

[[1. 0. 0.]
[0. 1. 0.]
[0. 0. 1.]]
Salin selepas log masuk

Contoh 6

Akhir sekali, fungsi np.diag boleh mencipta matriks pepenjuru daripada senarai atau tatasusunan yang diberikan. Contohnya -

import numpy as np
A = np.diag([1,2,3]) # Creates a diagonal matrix from the given list
print(A)
Salin selepas log masuk

Output

Ini akan mengeluarkan matriks berikut.

[[1 0 0]
[0 2 0]
[0 0 3]]
Salin selepas log masuk

Kesimpulan

Ringkasnya, NumPy ialah perpustakaan Python yang berkuasa untuk melaksanakan operasi algebra linear. Pelbagai fungsi dan kaedah menjadikannya alat penting untuk pengiraan saintifik dan matematik, dan prestasi yang dioptimumkan menjadikannya sesuai untuk aplikasi berskala besar. Sama ada anda perlu mengira surih matriks, mencari songsangan matriks atau menyelesaikan sistem persamaan linear, NumPy menyediakan alatan yang anda perlukan untuk menyelesaikan kerja.

Atas ialah kandungan terperinci Bagaimana untuk mengira jejak matriks dalam Python menggunakan numpy?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

AI Hentai Generator

AI Hentai Generator

Menjana ai hentai secara percuma.

Artikel Panas

R.E.P.O. Kristal tenaga dijelaskan dan apa yang mereka lakukan (kristal kuning)
1 bulan yang lalu By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Tetapan grafik terbaik
1 bulan yang lalu By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Cara Memperbaiki Audio Jika anda tidak dapat mendengar sesiapa
1 bulan yang lalu By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Arahan sembang dan cara menggunakannya
1 bulan yang lalu By 尊渡假赌尊渡假赌尊渡假赌

Alat panas

Notepad++7.3.1

Notepad++7.3.1

Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina

SublimeText3 versi Cina

Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1

Hantar Studio 13.0.1

Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6

Dreamweaver CS6

Alat pembangunan web visual

SublimeText3 versi Mac

SublimeText3 versi Mac

Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

PHP dan Python: Contoh dan perbandingan kod PHP dan Python: Contoh dan perbandingan kod Apr 15, 2025 am 12:07 AM

PHP dan Python mempunyai kelebihan dan kekurangan mereka sendiri, dan pilihannya bergantung kepada keperluan projek dan keutamaan peribadi. 1.PHP sesuai untuk pembangunan pesat dan penyelenggaraan aplikasi web berskala besar. 2. Python menguasai bidang sains data dan pembelajaran mesin.

Cara Melatih Model Pytorch di CentOs Cara Melatih Model Pytorch di CentOs Apr 14, 2025 pm 03:03 PM

Latihan yang cekap model pytorch pada sistem CentOS memerlukan langkah -langkah, dan artikel ini akan memberikan panduan terperinci. 1. Penyediaan Persekitaran: Pemasangan Python dan Ketergantungan: Sistem CentOS biasanya mempamerkan python, tetapi versi mungkin lebih tua. Adalah disyorkan untuk menggunakan YUM atau DNF untuk memasang Python 3 dan menaik taraf PIP: Sudoyumupdatepython3 (atau SudodnfupdatePython3), pip3install-upgradepip. CUDA dan CUDNN (Percepatan GPU): Jika anda menggunakan Nvidiagpu, anda perlu memasang Cudatool

Python vs JavaScript: Komuniti, Perpustakaan, dan Sumber Python vs JavaScript: Komuniti, Perpustakaan, dan Sumber Apr 15, 2025 am 12:16 AM

Python dan JavaScript mempunyai kelebihan dan kekurangan mereka sendiri dari segi komuniti, perpustakaan dan sumber. 1) Komuniti Python mesra dan sesuai untuk pemula, tetapi sumber pembangunan depan tidak kaya dengan JavaScript. 2) Python berkuasa dalam bidang sains data dan perpustakaan pembelajaran mesin, sementara JavaScript lebih baik dalam perpustakaan pembangunan dan kerangka pembangunan depan. 3) Kedua -duanya mempunyai sumber pembelajaran yang kaya, tetapi Python sesuai untuk memulakan dengan dokumen rasmi, sementara JavaScript lebih baik dengan MDNWebDocs. Pilihan harus berdasarkan keperluan projek dan kepentingan peribadi.

Bagaimana sokongan GPU untuk Pytorch di CentOS Bagaimana sokongan GPU untuk Pytorch di CentOS Apr 14, 2025 pm 06:48 PM

Membolehkan pecutan GPU pytorch pada sistem CentOS memerlukan pemasangan cuda, cudnn dan GPU versi pytorch. Langkah-langkah berikut akan membimbing anda melalui proses: Pemasangan CUDA dan CUDNN Tentukan keserasian versi CUDA: Gunakan perintah NVIDIA-SMI untuk melihat versi CUDA yang disokong oleh kad grafik NVIDIA anda. Sebagai contoh, kad grafik MX450 anda boleh menyokong CUDA11.1 atau lebih tinggi. Muat turun dan pasang Cudatoolkit: Lawati laman web rasmi Nvidiacudatoolkit dan muat turun dan pasang versi yang sepadan mengikut versi CUDA tertinggi yang disokong oleh kad grafik anda. Pasang Perpustakaan Cudnn:

Penjelasan terperinci mengenai Prinsip Docker Penjelasan terperinci mengenai Prinsip Docker Apr 14, 2025 pm 11:57 PM

Docker menggunakan ciri -ciri kernel Linux untuk menyediakan persekitaran berjalan yang cekap dan terpencil. Prinsip kerjanya adalah seperti berikut: 1. Cermin digunakan sebagai templat baca sahaja, yang mengandungi semua yang anda perlukan untuk menjalankan aplikasi; 2. Sistem Fail Kesatuan (Unionfs) menyusun pelbagai sistem fail, hanya menyimpan perbezaan, menjimatkan ruang dan mempercepatkan; 3. Daemon menguruskan cermin dan bekas, dan pelanggan menggunakannya untuk interaksi; 4. Ruang nama dan cgroups melaksanakan pengasingan kontena dan batasan sumber; 5. Pelbagai mod rangkaian menyokong interkoneksi kontena. Hanya dengan memahami konsep -konsep teras ini, anda boleh menggunakan Docker dengan lebih baik.

Cara Memilih Versi PyTorch Di Bawah Centos Cara Memilih Versi PyTorch Di Bawah Centos Apr 14, 2025 pm 02:51 PM

Apabila memilih versi pytorch di bawah CentOS, faktor utama berikut perlu dipertimbangkan: 1. Keserasian versi CUDA Sokongan GPU: Jika anda mempunyai NVIDIA GPU dan ingin menggunakan pecutan GPU, anda perlu memilih pytorch yang menyokong versi CUDA yang sepadan. Anda boleh melihat versi CUDA yang disokong dengan menjalankan arahan NVIDIA-SMI. Versi CPU: Jika anda tidak mempunyai GPU atau tidak mahu menggunakan GPU, anda boleh memilih versi CPU PyTorch. 2. Pytorch versi python

Cara Memasang Nginx di CentOs Cara Memasang Nginx di CentOs Apr 14, 2025 pm 08:06 PM

CentOS Memasang Nginx memerlukan mengikuti langkah-langkah berikut: memasang kebergantungan seperti alat pembangunan, pcre-devel, dan openssl-devel. Muat turun Pakej Kod Sumber Nginx, unzip dan menyusun dan memasangnya, dan tentukan laluan pemasangan sebagai/usr/local/nginx. Buat pengguna Nginx dan kumpulan pengguna dan tetapkan kebenaran. Ubah suai fail konfigurasi nginx.conf, dan konfigurasikan port pendengaran dan nama domain/alamat IP. Mulakan perkhidmatan Nginx. Kesalahan biasa perlu diberi perhatian, seperti isu ketergantungan, konflik pelabuhan, dan kesilapan fail konfigurasi. Pengoptimuman prestasi perlu diselaraskan mengikut keadaan tertentu, seperti menghidupkan cache dan menyesuaikan bilangan proses pekerja.

Keserasian Centos Miniopen Keserasian Centos Miniopen Apr 14, 2025 pm 05:45 PM

Penyimpanan Objek Minio: Penyebaran berprestasi tinggi di bawah CentOS System Minio adalah prestasi tinggi, sistem penyimpanan objek yang diedarkan yang dibangunkan berdasarkan bahasa Go, serasi dengan Amazons3. Ia menyokong pelbagai bahasa pelanggan, termasuk Java, Python, JavaScript, dan GO. Artikel ini akan memperkenalkan pemasangan dan keserasian minio pada sistem CentOS. Keserasian versi CentOS Minio telah disahkan pada pelbagai versi CentOS, termasuk tetapi tidak terhad kepada: CentOS7.9: Menyediakan panduan pemasangan lengkap yang meliputi konfigurasi kluster, penyediaan persekitaran, tetapan fail konfigurasi, pembahagian cakera, dan mini

See all articles