Rumah pembangunan bahagian belakang tutorial php PHP 5.0对象模型深度探索之构造和析构_PHP

PHP 5.0对象模型深度探索之构造和析构_PHP

Jun 01, 2016 pm 12:30 PM
fungsi objek meneroka Model kedalaman

如果你在一个类中声明一个函数,命名为__construct,这个函数将被当成是一个构造函数并在建立一个对象实例时被执行。清楚地说,__是两个下划线。就像其它任何函数一样,构造函数可能有参数或者默认值. 你可以定义一个类来建立一个对象并将其属性全放在一个语句(statement)中。

  你也可以定义一个名为__destruct的函数,PHP将在对象被销毁前调用这个函数. 它称为析构函数.

  继承是类的一个强大功能。一个类(子类/派生类)可以继承另一类(父类/基类)的功能. 派生类将包含有基类的所有属性和方法,并可以在派生类中加上其他属性和方法。你也可以覆写基类的方法和属性。就像前文中显示的,你可以用extends关键字来继承一个类。

  你可能想知道构造函数是如何被继承的。当它们和其它方法一起被继承时,他们不会在创建对象时被执行。

  如果你需要这个功能,你需要用第二章提到的::运算符. 它允许你指向一块命名空间. parent指向父类命名空间,你可以用parent::__construct来调用父类的构造函数。

  一些面向对象语言在类之后命名构造函数。PHP的前几个版本也是如此,到现在这种方法仍然有效.也就是:如果你把一个类命名为Animal并且在其中建立一个命名也是Animal的方法,则这个方法就是构造函数.如果一个类的同时拥有__construt构造函数和与类名相同的函数,PHP将把__construct看作构造函数。这使得用以前的PHP版本所写的类仍然可以使用. 但新的脚本(PHP5)应当使用__construct。

  PHP的这种新的声明构造函数的方法可以使构造函数有一个独一无二的名称,无论它所在的类的名称是什么。这样你在改变类的名称时,就不需要改变构造函数的名称。

  你可能在PHP中给构造函数一个像其它类方法一样的访问方式。访问方式将会影响从一定范围内实例化对象的能力。这允许实现一些固定的设计模式,如Singleton模式。

  析构函数,相反于构造函数。PHP调用它们来将一个对象从内存中销毁。默认地,PHP仅仅释放对象属性所占用的内存并销毁对象相关的资源。析构函数允许你在使用一个对象之后执行任意代码来清除内存。

  当PHP决定你的脚本不再与对象相关时,析构函数将被调用. 在一个函数的命名空间内,这会发生在函数return的时候. 对于全局变量,这发生于脚本结束的时候. 如果你想明确地销毁一个对象,你可以给指向该对象的变量分配任何其它值. 通常将变量赋值勤为NULL或者调用unset。

  下面的例子中,计算从类中实例化的对象的个数. Counter类从构造函数开始增值,在析构函数减值。

  一旦你定义了一个类,你可以用new来建立一个这个类的实例. 类的定义是设计图,实例则是放在装配线上的元件. New需要类的名称,并返回该类的一个实例。如果构造函数需要参数,你应当在new后输入参数。

class Counter
{
 private static $count = 0;

 function __construct()
 {
  self::$count ;
 }

 function __destruct()
 {
  self::$count--;
 }

 function getCount()
 {
  return self::$count;
 }
}

//建立第一个实例
$c = new Counter();

//输出1
print($c->getCount() . "n");

//建立第二个实例
$c2 = new Counter();

//输出2
print($c->getCount() . "n");

//销毁实例
$c2 = NULL;

//输出1
print($c->getCount() . "n");
?>

Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

AI Hentai Generator

AI Hentai Generator

Menjana ai hentai secara percuma.

Artikel Panas

R.E.P.O. Kristal tenaga dijelaskan dan apa yang mereka lakukan (kristal kuning)
3 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Tetapan grafik terbaik
3 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Cara Memperbaiki Audio Jika anda tidak dapat mendengar sesiapa
3 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌

Alat panas

Notepad++7.3.1

Notepad++7.3.1

Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina

SublimeText3 versi Cina

Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1

Hantar Studio 13.0.1

Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6

Dreamweaver CS6

Alat pembangunan web visual

SublimeText3 versi Mac

SublimeText3 versi Mac

Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Model MoE sumber terbuka paling berkuasa di dunia ada di sini, dengan keupayaan bahasa Cina setanding dengan GPT-4, dan harganya hanya hampir satu peratus daripada GPT-4-Turbo Model MoE sumber terbuka paling berkuasa di dunia ada di sini, dengan keupayaan bahasa Cina setanding dengan GPT-4, dan harganya hanya hampir satu peratus daripada GPT-4-Turbo May 07, 2024 pm 04:13 PM

Bayangkan model kecerdasan buatan yang bukan sahaja mempunyai keupayaan untuk mengatasi pengkomputeran tradisional, tetapi juga mencapai prestasi yang lebih cekap pada kos yang lebih rendah. Ini bukan fiksyen sains, DeepSeek-V2[1], model MoE sumber terbuka paling berkuasa di dunia ada di sini. DeepSeek-V2 ialah gabungan model bahasa pakar (MoE) yang berkuasa dengan ciri-ciri latihan ekonomi dan inferens yang cekap. Ia terdiri daripada 236B parameter, 21B daripadanya digunakan untuk mengaktifkan setiap penanda. Berbanding dengan DeepSeek67B, DeepSeek-V2 mempunyai prestasi yang lebih kukuh, sambil menjimatkan 42.5% kos latihan, mengurangkan cache KV sebanyak 93.3% dan meningkatkan daya pemprosesan penjanaan maksimum kepada 5.76 kali. DeepSeek ialah sebuah syarikat yang meneroka kecerdasan buatan am

KAN, yang menggantikan MLP, telah diperluaskan kepada konvolusi oleh projek sumber terbuka KAN, yang menggantikan MLP, telah diperluaskan kepada konvolusi oleh projek sumber terbuka Jun 01, 2024 pm 10:03 PM

Awal bulan ini, penyelidik dari MIT dan institusi lain mencadangkan alternatif yang sangat menjanjikan kepada MLP - KAN. KAN mengatasi MLP dari segi ketepatan dan kebolehtafsiran. Dan ia boleh mengatasi prestasi MLP berjalan dengan bilangan parameter yang lebih besar dengan bilangan parameter yang sangat kecil. Sebagai contoh, penulis menyatakan bahawa mereka menggunakan KAN untuk menghasilkan semula keputusan DeepMind dengan rangkaian yang lebih kecil dan tahap automasi yang lebih tinggi. Khususnya, MLP DeepMind mempunyai kira-kira 300,000 parameter, manakala KAN hanya mempunyai kira-kira 200 parameter. KAN mempunyai asas matematik yang kukuh seperti MLP berdasarkan teorem penghampiran universal, manakala KAN berdasarkan teorem perwakilan Kolmogorov-Arnold. Seperti yang ditunjukkan dalam rajah di bawah, KAN telah

Robot Tesla bekerja di kilang, Musk: Tahap kebebasan tangan akan mencapai 22 tahun ini! Robot Tesla bekerja di kilang, Musk: Tahap kebebasan tangan akan mencapai 22 tahun ini! May 06, 2024 pm 04:13 PM

Video terbaru robot Tesla Optimus dikeluarkan, dan ia sudah boleh berfungsi di kilang. Pada kelajuan biasa, ia mengisih bateri (bateri 4680 Tesla) seperti ini: Pegawai itu juga mengeluarkan rupanya pada kelajuan 20x - pada "stesen kerja" kecil, memilih dan memilih dan memilih: Kali ini ia dikeluarkan Salah satu sorotan video itu ialah Optimus menyelesaikan kerja ini di kilang, sepenuhnya secara autonomi, tanpa campur tangan manusia sepanjang proses. Dan dari perspektif Optimus, ia juga boleh mengambil dan meletakkan bateri yang bengkok, memfokuskan pada pembetulan ralat automatik: Berkenaan tangan Optimus, saintis NVIDIA Jim Fan memberikan penilaian yang tinggi: Tangan Optimus adalah robot lima jari di dunia paling cerdik. Tangannya bukan sahaja boleh disentuh

Satu kad menjalankan Llama 70B lebih pantas daripada dua kad, Microsoft hanya meletakkan FP6 ke dalam A100 | Satu kad menjalankan Llama 70B lebih pantas daripada dua kad, Microsoft hanya meletakkan FP6 ke dalam A100 | Apr 29, 2024 pm 04:55 PM

FP8 dan ketepatan pengiraan titik terapung yang lebih rendah bukan lagi "paten" H100! Lao Huang mahu semua orang menggunakan INT8/INT4, dan pasukan Microsoft DeepSpeed ​​​​memaksa diri mereka menjalankan FP6 pada A100 tanpa sokongan rasmi daripada Nvidia. Keputusan ujian menunjukkan bahawa kaedah baharu TC-FPx FP6 kuantisasi pada A100 adalah hampir atau kadangkala lebih pantas daripada INT4, dan mempunyai ketepatan yang lebih tinggi daripada yang terakhir. Selain itu, terdapat juga sokongan model besar hujung ke hujung, yang telah bersumberkan terbuka dan disepadukan ke dalam rangka kerja inferens pembelajaran mendalam seperti DeepSpeed. Keputusan ini juga mempunyai kesan serta-merta pada mempercepatkan model besar - di bawah rangka kerja ini, menggunakan satu kad untuk menjalankan Llama, daya pemprosesan adalah 2.65 kali lebih tinggi daripada dua kad. satu

Tiada data OpenAI diperlukan, sertai senarai model kod besar! UIUC mengeluarkan StarCoder-15B-Instruct Tiada data OpenAI diperlukan, sertai senarai model kod besar! UIUC mengeluarkan StarCoder-15B-Instruct Jun 13, 2024 pm 01:59 PM

Di barisan hadapan teknologi perisian, kumpulan UIUC Zhang Lingming, bersama penyelidik dari organisasi BigCode, baru-baru ini mengumumkan model kod besar StarCoder2-15B-Instruct. Pencapaian inovatif ini mencapai kejayaan ketara dalam tugas penjanaan kod, berjaya mengatasi CodeLlama-70B-Instruct dan mencapai bahagian atas senarai prestasi penjanaan kod. Keunikan StarCoder2-15B-Instruct terletak pada strategi penjajaran diri yang tulen Keseluruhan proses latihan adalah terbuka, telus, dan sepenuhnya autonomi dan boleh dikawal. Model ini menjana beribu-ribu arahan melalui StarCoder2-15B sebagai tindak balas kepada penalaan halus model asas StarCoder-15B tanpa bergantung pada anotasi manual yang mahal.

Melebihi DPO secara menyeluruh: Pasukan Chen Danqi mencadangkan pengoptimuman pilihan mudah SimPO, dan turut memperhalusi model sumber terbuka 8B terkuat Melebihi DPO secara menyeluruh: Pasukan Chen Danqi mencadangkan pengoptimuman pilihan mudah SimPO, dan turut memperhalusi model sumber terbuka 8B terkuat Jun 01, 2024 pm 04:41 PM

Untuk menyelaraskan model bahasa besar (LLM) dengan nilai dan niat manusia, adalah penting untuk mempelajari maklum balas manusia untuk memastikan bahawa ia berguna, jujur ​​dan tidak berbahaya. Dari segi penjajaran LLM, kaedah yang berkesan ialah pembelajaran pengukuhan berdasarkan maklum balas manusia (RLHF). Walaupun keputusan kaedah RLHF adalah cemerlang, terdapat beberapa cabaran pengoptimuman yang terlibat. Ini melibatkan latihan model ganjaran dan kemudian mengoptimumkan model dasar untuk memaksimumkan ganjaran tersebut. Baru-baru ini, beberapa penyelidik telah meneroka algoritma luar talian yang lebih mudah, salah satunya ialah pengoptimuman keutamaan langsung (DPO). DPO mempelajari model dasar secara langsung berdasarkan data keutamaan dengan meparameterkan fungsi ganjaran dalam RLHF, sekali gus menghapuskan keperluan untuk model ganjaran yang jelas. Kaedah ini mudah dan stabil

Yolov10: Penjelasan terperinci, penggunaan dan aplikasi semuanya di satu tempat! Yolov10: Penjelasan terperinci, penggunaan dan aplikasi semuanya di satu tempat! Jun 07, 2024 pm 12:05 PM

1. Pengenalan Sejak beberapa tahun kebelakangan ini, YOLO telah menjadi paradigma dominan dalam bidang pengesanan objek masa nyata kerana keseimbangannya yang berkesan antara kos pengiraan dan prestasi pengesanan. Penyelidik telah meneroka reka bentuk seni bina YOLO, matlamat pengoptimuman, strategi pengembangan data, dsb., dan telah mencapai kemajuan yang ketara. Pada masa yang sama, bergantung pada penindasan bukan maksimum (NMS) untuk pemprosesan pasca menghalang penggunaan YOLO dari hujung ke hujung dan memberi kesan buruk kepada kependaman inferens. Dalam YOLO, reka bentuk pelbagai komponen tidak mempunyai pemeriksaan yang komprehensif dan teliti, mengakibatkan lebihan pengiraan yang ketara dan mengehadkan keupayaan model. Ia menawarkan kecekapan suboptimum, dan potensi yang agak besar untuk peningkatan prestasi. Dalam kerja ini, matlamatnya adalah untuk meningkatkan lagi sempadan kecekapan prestasi YOLO daripada kedua-dua pasca pemprosesan dan seni bina model. sampai habis

Li Feifei mendedahkan hala tuju keusahawanan 'kecerdasan ruang': visualisasi bertukar menjadi wawasan, melihat menjadi pemahaman, dan pemahaman membawa kepada tindakan Li Feifei mendedahkan hala tuju keusahawanan 'kecerdasan ruang': visualisasi bertukar menjadi wawasan, melihat menjadi pemahaman, dan pemahaman membawa kepada tindakan Jun 01, 2024 pm 02:55 PM

Stanford Li Feifei memperkenalkan konsep baharu "kecerdasan ruang" buat kali pertama selepas memulakan perniagaannya sendiri. Ini bukan sahaja hala tuju keusahawanannya, tetapi juga "Bintang Utara" yang membimbingnya "bahagian teka-teki utama untuk menyelesaikan masalah kecerdasan buatan." Visualisasi membawa kepada pandangan; melihat membawa kepada pemahaman; Berdasarkan ceramah TED selama 15 minit Li Feifei, ia didedahkan sepenuhnya, bermula dari asal-usul evolusi kehidupan beratus-ratus juta tahun yang lalu, kepada bagaimana manusia tidak berpuas hati dengan apa yang telah diberikan oleh alam semula jadi kepada mereka dan membangunkan kecerdasan buatan, kepada bagaimana untuk membina. kecerdasan ruang dalam langkah seterusnya. Sembilan tahun yang lalu, Li Feifei memperkenalkan ImageNet yang baru dilahirkan kepada dunia di peringkat yang sama - salah satu titik permulaan untuk pusingan ledakan pembelajaran mendalam ini. Dia sendiri juga menggalakkan netizen: Jika anda menonton kedua-dua video, anda akan dapat memahami visi komputer selama 10 tahun yang lalu.

See all articles