


Bagaimana untuk melaksanakan algoritma genetik menggunakan Python?
Bagaimana untuk melaksanakan algoritma genetik menggunakan Python?
Pengenalan:
Algoritma genetik, sebagai model pengiraan yang menyerupai proses evolusi biologi evolusi, telah digunakan secara meluas dalam menyelesaikan masalah pengoptimuman. Python, sebagai bahasa pengaturcaraan berkuasa yang mudah dipelajari dan digunakan, menyediakan banyak perpustakaan dan alatan untuk melaksanakan algoritma genetik. Artikel ini akan memperkenalkan cara menggunakan Python untuk melaksanakan algoritma genetik dan memberikan contoh kod khusus.
1. Gambaran Keseluruhan Algoritma Genetik
Algoritma genetik menyerupai proses evolusi biologi dan secara beransur-ansur mengoptimumkan penyelesaian kepada masalah melalui operasi seperti pemilihan, silang dan mutasi. Langkah-langkah khusus adalah seperti berikut:
- Memulakan populasi: Menjana secara rawak set penyelesaian awal (individu) untuk membentuk set penyelesaian (populasi).
- Nilai kecergasan: Nilai kecergasan setiap individu iaitu mengira kualiti penyelesaiannya.
- Operasi pemilihan: Pilih individu yang mempunyai kecergasan yang lebih baik sebagai ibu bapa untuk mengambil bahagian dalam pembiakan generasi akan datang.
- Operasi silang: Lakukan operasi silang pada individu induk terpilih untuk menjana individu zuriat.
- Operasi mutasi: Lakukan operasi mutasi ke atas individu keturunan untuk memperkenalkan penyelesaian baharu dan meningkatkan kepelbagaian populasi.
- Kemas kini populasi: gabungkan anak ke dalam populasi asal untuk membentuk populasi baharu.
- Nilai syarat penamatan: tentukan sama ada syarat penamatan dipenuhi, seperti mencapai bilangan lelaran maksimum atau mencari penyelesaian yang memuaskan.
- Kembalikan penyelesaian optimum: Kembalikan penyelesaian optimum sebagai penyelesaian kepada masalah.
2. Contoh kod pelaksanaan algoritma genetik dalam Python
Berikut ialah contoh kod masalah khusus untuk menunjukkan cara menggunakan Python untuk melaksanakan algoritma genetik. Ambil masalah menyelesaikan masalah mencari nombor terbesar 1 dalam rentetan binari sebagai contoh.
import random def generate_individual(length): return [random.randint(0, 1) for _ in range(length)] def evaluate_fitness(individual): return sum(individual) def selection(population, num_parents): population.sort(key=lambda x: evaluate_fitness(x), reverse=True) return population[:num_parents] def crossover(parents, num_offsprings): offsprings = [] for _ in range(num_offsprings): parent1, parent2 = random.sample(parents, 2) cut_point = random.randint(1, len(parent1) - 1) offspring = parent1[:cut_point] + parent2[cut_point:] offsprings.append(offspring) return offsprings def mutation(offsprings, mutation_rate): for i in range(len(offsprings)): if random.random() < mutation_rate: index = random.randint(0, len(offsprings[i]) - 1) offsprings[i][index] = 1 - offsprings[i][index] return offsprings def genetic_algorithm(length, population_size, num_parents, num_offsprings, mutation_rate, num_generations): population = [generate_individual(length) for _ in range(population_size)] for _ in range(num_generations): parents = selection(population, num_parents) offsprings = crossover(parents, num_offsprings) offsprings = mutation(offsprings, mutation_rate) population = parents + offsprings best_individual = max(population, key=lambda x: evaluate_fitness(x)) return best_individual # 示例运行 length = 10 population_size = 50 num_parents = 20 num_offsprings = 20 mutation_rate = 0.1 num_generations = 100 best_individual = genetic_algorithm(length, population_size, num_parents, num_offsprings, mutation_rate, num_generations) print(f"最优解为:{best_individual}")
Dalam kod di atas, beberapa fungsi operasi algoritma genetik asas pertama kali ditakrifkan. Fungsi generate_individual digunakan untuk menjana rentetan binari secara rawak sebagai individu. Fungsi evaluate_fitness mengira bilangan 1 dalam individu sebagai kecergasan. Fungsi pemilihan melakukan operasi pemilihan ke atas populasi berdasarkan kecergasan. Fungsi silang melakukan operasi silang pada individu induk yang dipilih. Fungsi mutasi melakukan operasi mutasi pada individu keturunan yang dijana oleh silang. Akhir sekali, fungsi genetik_algoritma mengintegrasikan operasi di atas dan melaksanakan proses lelaran algoritma genetik.
Dalam larian contoh, panjang rentetan binari ditetapkan kepada 10, saiz populasi ialah 50, bilangan ibu bapa dan anak kedua-duanya adalah 20, kadar mutasi ialah 0.1, dan bilangan lelaran ialah 100. Keputusan berjalan akan mengeluarkan penyelesaian optimum yang ditemui.
Kesimpulan:
Artikel ini memperkenalkan cara menggunakan Python untuk melaksanakan algoritma genetik, dan menggunakan contoh kod khusus untuk menunjukkan masalah menyelesaikan masalah mencari nombor 1 terbesar dalam rentetan binari. Pembaca boleh melaraskan parameter dan fungsi kecergasan dalam kod untuk menyelesaikan masalah pengoptimuman lain mengikut keperluan mereka.
Atas ialah kandungan terperinci Bagaimana untuk melaksanakan algoritma genetik menggunakan Python?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas



MySQL mempunyai versi komuniti percuma dan versi perusahaan berbayar. Versi komuniti boleh digunakan dan diubahsuai secara percuma, tetapi sokongannya terhad dan sesuai untuk aplikasi dengan keperluan kestabilan yang rendah dan keupayaan teknikal yang kuat. Edisi Enterprise menyediakan sokongan komersil yang komprehensif untuk aplikasi yang memerlukan pangkalan data yang stabil, boleh dipercayai, berprestasi tinggi dan bersedia membayar sokongan. Faktor yang dipertimbangkan apabila memilih versi termasuk kritikal aplikasi, belanjawan, dan kemahiran teknikal. Tidak ada pilihan yang sempurna, hanya pilihan yang paling sesuai, dan anda perlu memilih dengan teliti mengikut keadaan tertentu.

Hadidb: Pangkalan data Python yang ringan, tinggi, Hadidb (Hadidb) adalah pangkalan data ringan yang ditulis dalam Python, dengan tahap skalabilitas yang tinggi. Pasang HadIdb menggunakan pemasangan PIP: Pengurusan Pengguna PipInstallHadidB Buat Pengguna: CreateUser () Kaedah untuk membuat pengguna baru. Kaedah pengesahan () mengesahkan identiti pengguna. dariHadidb.OperationImportuserer_Obj = user ("admin", "admin") user_obj.

Tidak mustahil untuk melihat kata laluan MongoDB secara langsung melalui Navicat kerana ia disimpan sebagai nilai hash. Cara mendapatkan kata laluan yang hilang: 1. Tetapkan semula kata laluan; 2. Periksa fail konfigurasi (mungkin mengandungi nilai hash); 3. Semak Kod (boleh kata laluan Hardcode).

MySQL boleh berjalan tanpa sambungan rangkaian untuk penyimpanan dan pengurusan data asas. Walau bagaimanapun, sambungan rangkaian diperlukan untuk interaksi dengan sistem lain, akses jauh, atau menggunakan ciri -ciri canggih seperti replikasi dan clustering. Di samping itu, langkah -langkah keselamatan (seperti firewall), pengoptimuman prestasi (pilih sambungan rangkaian yang betul), dan sandaran data adalah penting untuk menyambung ke Internet.

MySQL Workbench boleh menyambung ke MariaDB, dengan syarat bahawa konfigurasi adalah betul. Mula -mula pilih "MariaDB" sebagai jenis penyambung. Dalam konfigurasi sambungan, tetapkan host, port, pengguna, kata laluan, dan pangkalan data dengan betul. Apabila menguji sambungan, periksa bahawa perkhidmatan MariaDB dimulakan, sama ada nama pengguna dan kata laluan betul, sama ada nombor port betul, sama ada firewall membenarkan sambungan, dan sama ada pangkalan data itu wujud. Dalam penggunaan lanjutan, gunakan teknologi penyatuan sambungan untuk mengoptimumkan prestasi. Kesilapan biasa termasuk kebenaran yang tidak mencukupi, masalah sambungan rangkaian, dan lain -lain. Apabila kesilapan debugging, dengan teliti menganalisis maklumat ralat dan gunakan alat penyahpepijatan. Mengoptimumkan konfigurasi rangkaian dapat meningkatkan prestasi

Panduan Pengoptimuman Prestasi Pangkalan Data MySQL Dalam aplikasi yang berintensifkan sumber, pangkalan data MySQL memainkan peranan penting dan bertanggungjawab untuk menguruskan urus niaga besar-besaran. Walau bagaimanapun, apabila skala aplikasi berkembang, kemunculan prestasi pangkalan data sering menjadi kekangan. Artikel ini akan meneroka satu siri strategi pengoptimuman prestasi MySQL yang berkesan untuk memastikan aplikasi anda tetap cekap dan responsif di bawah beban tinggi. Kami akan menggabungkan kes-kes sebenar untuk menerangkan teknologi utama yang mendalam seperti pengindeksan, pengoptimuman pertanyaan, reka bentuk pangkalan data dan caching. 1. Reka bentuk seni bina pangkalan data dan seni bina pangkalan data yang dioptimumkan adalah asas pengoptimuman prestasi MySQL. Berikut adalah beberapa prinsip teras: Memilih jenis data yang betul dan memilih jenis data terkecil yang memenuhi keperluan bukan sahaja dapat menjimatkan ruang penyimpanan, tetapi juga meningkatkan kelajuan pemprosesan data.

Sambungan MySQL mungkin disebabkan oleh sebab -sebab berikut: Perkhidmatan MySQL tidak dimulakan, firewall memintas sambungan, nombor port tidak betul, nama pengguna atau kata laluan tidak betul, alamat pendengaran di my.cnf dikonfigurasi dengan tidak wajar, dan lain -lain. Langkah -langkah penyelesaian masalah termasuk: 1. 2. Laraskan tetapan firewall untuk membolehkan MySQL mendengar port 3306; 3. Sahkan bahawa nombor port adalah konsisten dengan nombor port sebenar; 4. Periksa sama ada nama pengguna dan kata laluan betul; 5. Pastikan tetapan alamat mengikat di my.cnf betul.

Sebagai profesional data, anda perlu memproses sejumlah besar data dari pelbagai sumber. Ini boleh menimbulkan cabaran kepada pengurusan data dan analisis. Nasib baik, dua perkhidmatan AWS dapat membantu: AWS Glue dan Amazon Athena.
