Jadual Kandungan
Apakah Geometric Deep Learning
1 Memahami perspektif graf
2. Merangkul domain spatial dan spektral
3. Aplikasi ke rangkaian sosial
4. GDL dalam pengecaman objek 3D
5 Molekul dan penemuan dadah
6. Pembelajaran separuh seliaan
7 Cabaran dan Kemajuan
8. Alat dan Rangka Kerja
9. Mod Hibrid
10 Membentuk masa depan kecerdasan buatan
Ringkasan
Rumah Peranti teknologi AI Pembelajaran Mendalam Geometri: Membongkar Misteri Dunia Geometri

Pembelajaran Mendalam Geometri: Membongkar Misteri Dunia Geometri

Sep 20, 2023 pm 05:57 PM
AI pembelajaran yang mendalam

Pembelajaran Mendalam Geometri: Membongkar Misteri Dunia Geometri

Apakah Geometric Deep Learning

Dalam bidang kecerdasan buatan dan pembelajaran mesin yang sentiasa berkembang, paradigma berkuasa yang dipanggil Geometric Deep Learning (GDL) telah muncul yang semakin menonjol. Berdasarkan teori dan geometri graf, GDL menyediakan kaedah revolusioner untuk menganalisis data dengan perhubungan yang kompleks (seperti rangkaian sosial, molekul dan objek 3D)

1 Memahami perspektif graf

Inti pembelajaran mendalam geometri ialah konsep graf. . Graf terdiri daripada nod dan tepi dan merupakan model hubungan antara entiti. GDL menggunakan struktur ini untuk menangkap kebergantungan yang kompleks dalam data, yang sukar diselesaikan dengan model pembelajaran mendalam tradisional

2. Merangkul domain spatial dan spektral

GDL berfungsi dalam kedua-dua domain spatial dan spektral. Data dan hubungannya dikodkan secara langsung dalam domain spatial graf. Dalam domain spektrum, isyarat corak ditukar kepada ruang frekuensi, dengan itu merealisasikan aplikasi teknologi pemprosesan isyarat.

3. Aplikasi ke rangkaian sosial

Aplikasi GDL yang menonjol ialah analisis rangkaian sosial. Dengan menganggap individu sebagai nod dan perhubungan sebagai tepi, GDL boleh mendedahkan corak tersembunyi, mengenal pasti komuniti dan meramalkan tingkah laku dalam interaksi sosial.

4. GDL dalam pengecaman objek 3D

Pembelajaran mendalam geometri ialah teknologi yang berprestasi baik dalam pengecaman dan analisis objek 3D. Dengan mewakili objek sebagai graf dan mengambil kira sifat geometrinya, GDL membolehkan mesin memahami bentuk dan struktur objek yang kompleks

5 Molekul dan penemuan dadah

Dalam bidang kimia, GDL membawa harapan untuk penemuan dadah. Molekul boleh diwakili sebagai graf, membolehkan GDL meramalkan sifat molekul, mengoptimumkan calon ubat dan mempercepatkan pembangunan ubat.

6. Pembelajaran separuh seliaan

GDL boleh berkembang maju apabila data berlabel adalah terhad. Ia menggabungkan maklumat daripada titik data berlabel dan tidak berlabel, menjadikannya sesuai untuk tugas pembelajaran separa penyeliaan di mana sampel berlabel adalah terhad.

7 Cabaran dan Kemajuan

Walaupun GDL mempunyai potensinya, ia juga menghadapi cabaran seperti kebolehskalaan dan kebolehtafsiran. Walau bagaimanapun, penyelidikan berterusan menangani isu ini dengan kemajuan dalam algoritma graf berskala dan teknik visualisasi.

8. Alat dan Rangka Kerja

Pelbagai perpustakaan dan rangka kerja, seperti PyTorch Geometric dan GraphSAGE, menumpukan pada pembelajaran mendalam geometri. Alat ini membolehkan penyelidik dan pengamal melaksanakan algoritma GDL dengan berkesan

9. Mod Hibrid

GDL sering digabungkan dengan teknik pembelajaran mendalam tradisional untuk membentuk mod hibrid. Gabungan ini boleh mengendalikan tugas yang kompleks dengan berkesan dan memberikan permainan sepenuhnya kepada kelebihan kedua-dua paradigma

10 Membentuk masa depan kecerdasan buatan

Keupayaan pembelajaran mendalam geometri untuk memodelkan hubungan dan struktur yang kompleks meletakkan asas untuk pembangunan kecerdasan buatan. . Aplikasinya terdiri daripada penjagaan kesihatan kepada kewangan, memberikan perspektif baharu tentang pemprosesan dan pemahaman data yang kompleks.

Ringkasan

Dengan kemajuan kecerdasan buatan, pembelajaran mendalam geometri telah menjadi kuasa utama dalam merapatkan jurang antara pembelajaran mendalam tradisional dan hubungan data yang kompleks. Keupayaannya untuk mengendalikan kedua-dua domain grafik dan spatial membuka pintu kepada banyak aplikasi dalam bidang yang berbeza. Dengan penyelidikan berterusan, alat inovatif dan komuniti yang semakin berkembang, pembelajaran mendalam geometri berpotensi untuk membentuk semula bidang kecerdasan buatan, membuka jalan untuk ramalan yang lebih tepat dan cerapan mendalam ke dalam dunia data yang kompleks.

Atas ialah kandungan terperinci Pembelajaran Mendalam Geometri: Membongkar Misteri Dunia Geometri. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

AI Hentai Generator

AI Hentai Generator

Menjana ai hentai secara percuma.

Artikel Panas

R.E.P.O. Kristal tenaga dijelaskan dan apa yang mereka lakukan (kristal kuning)
3 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Tetapan grafik terbaik
3 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Cara Memperbaiki Audio Jika anda tidak dapat mendengar sesiapa
3 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌

Alat panas

Notepad++7.3.1

Notepad++7.3.1

Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina

SublimeText3 versi Cina

Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1

Hantar Studio 13.0.1

Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6

Dreamweaver CS6

Alat pembangunan web visual

SublimeText3 versi Mac

SublimeText3 versi Mac

Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Bytedance Cutting melancarkan keahlian super SVIP: 499 yuan untuk langganan tahunan berterusan, menyediakan pelbagai fungsi AI Bytedance Cutting melancarkan keahlian super SVIP: 499 yuan untuk langganan tahunan berterusan, menyediakan pelbagai fungsi AI Jun 28, 2024 am 03:51 AM

Laman web ini melaporkan pada 27 Jun bahawa Jianying ialah perisian penyuntingan video yang dibangunkan oleh FaceMeng Technology, anak syarikat ByteDance Ia bergantung pada platform Douyin dan pada asasnya menghasilkan kandungan video pendek untuk pengguna platform tersebut Windows , MacOS dan sistem pengendalian lain. Jianying secara rasmi mengumumkan peningkatan sistem keahliannya dan melancarkan SVIP baharu, yang merangkumi pelbagai teknologi hitam AI, seperti terjemahan pintar, penonjolan pintar, pembungkusan pintar, sintesis manusia digital, dsb. Dari segi harga, yuran bulanan untuk keratan SVIP ialah 79 yuan, yuran tahunan ialah 599 yuan (nota di laman web ini: bersamaan dengan 49.9 yuan sebulan), langganan bulanan berterusan ialah 59 yuan sebulan, dan langganan tahunan berterusan ialah 499 yuan setahun (bersamaan dengan 41.6 yuan sebulan) . Di samping itu, pegawai yang dipotong juga menyatakan bahawa untuk meningkatkan pengalaman pengguna, mereka yang telah melanggan VIP asal

Pembantu pengekodan AI yang ditambah konteks menggunakan Rag dan Sem-Rag Pembantu pengekodan AI yang ditambah konteks menggunakan Rag dan Sem-Rag Jun 10, 2024 am 11:08 AM

Tingkatkan produktiviti, kecekapan dan ketepatan pembangun dengan menggabungkan penjanaan dipertingkatkan semula dan memori semantik ke dalam pembantu pengekodan AI. Diterjemah daripada EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG, pengarang JanakiramMSV. Walaupun pembantu pengaturcaraan AI asas secara semulajadi membantu, mereka sering gagal memberikan cadangan kod yang paling relevan dan betul kerana mereka bergantung pada pemahaman umum bahasa perisian dan corak penulisan perisian yang paling biasa. Kod yang dijana oleh pembantu pengekodan ini sesuai untuk menyelesaikan masalah yang mereka bertanggungjawab untuk menyelesaikannya, tetapi selalunya tidak mematuhi piawaian pengekodan, konvensyen dan gaya pasukan individu. Ini selalunya menghasilkan cadangan yang perlu diubah suai atau diperhalusi agar kod itu diterima ke dalam aplikasi

Bolehkah penalaan halus benar-benar membolehkan LLM mempelajari perkara baharu: memperkenalkan pengetahuan baharu boleh menjadikan model menghasilkan lebih banyak halusinasi Bolehkah penalaan halus benar-benar membolehkan LLM mempelajari perkara baharu: memperkenalkan pengetahuan baharu boleh menjadikan model menghasilkan lebih banyak halusinasi Jun 11, 2024 pm 03:57 PM

Model Bahasa Besar (LLM) dilatih pada pangkalan data teks yang besar, di mana mereka memperoleh sejumlah besar pengetahuan dunia sebenar. Pengetahuan ini dibenamkan ke dalam parameter mereka dan kemudiannya boleh digunakan apabila diperlukan. Pengetahuan tentang model ini "diperbaharui" pada akhir latihan. Pada akhir pra-latihan, model sebenarnya berhenti belajar. Selaraskan atau perhalusi model untuk mempelajari cara memanfaatkan pengetahuan ini dan bertindak balas dengan lebih semula jadi kepada soalan pengguna. Tetapi kadangkala pengetahuan model tidak mencukupi, dan walaupun model boleh mengakses kandungan luaran melalui RAG, ia dianggap berfaedah untuk menyesuaikan model kepada domain baharu melalui penalaan halus. Penalaan halus ini dilakukan menggunakan input daripada anotasi manusia atau ciptaan LLM lain, di mana model menemui pengetahuan dunia sebenar tambahan dan menyepadukannya

Tujuh Soalan Temuduga Teknikal GenAI & LLM yang Cool Tujuh Soalan Temuduga Teknikal GenAI & LLM yang Cool Jun 07, 2024 am 10:06 AM

Untuk mengetahui lebih lanjut tentang AIGC, sila layari: 51CTOAI.x Komuniti https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou berbeza daripada bank soalan tradisional yang boleh dilihat di mana-mana sahaja di Internet memerlukan pemikiran di luar kotak. Model Bahasa Besar (LLM) semakin penting dalam bidang sains data, kecerdasan buatan generatif (GenAI) dan kecerdasan buatan. Algoritma kompleks ini meningkatkan kemahiran manusia dan memacu kecekapan dan inovasi dalam banyak industri, menjadi kunci kepada syarikat untuk kekal berdaya saing. LLM mempunyai pelbagai aplikasi Ia boleh digunakan dalam bidang seperti pemprosesan bahasa semula jadi, penjanaan teks, pengecaman pertuturan dan sistem pengesyoran. Dengan belajar daripada sejumlah besar data, LLM dapat menjana teks

Untuk menyediakan tanda aras dan sistem penilaian menjawab soalan saintifik dan kompleks baharu untuk model besar, UNSW, Argonne, University of Chicago dan institusi lain bersama-sama melancarkan rangka kerja SciQAG Untuk menyediakan tanda aras dan sistem penilaian menjawab soalan saintifik dan kompleks baharu untuk model besar, UNSW, Argonne, University of Chicago dan institusi lain bersama-sama melancarkan rangka kerja SciQAG Jul 25, 2024 am 06:42 AM

Editor |ScienceAI Question Answering (QA) set data memainkan peranan penting dalam mempromosikan penyelidikan pemprosesan bahasa semula jadi (NLP). Set data QA berkualiti tinggi bukan sahaja boleh digunakan untuk memperhalusi model, tetapi juga menilai dengan berkesan keupayaan model bahasa besar (LLM), terutamanya keupayaan untuk memahami dan menaakul tentang pengetahuan saintifik. Walaupun pada masa ini terdapat banyak set data QA saintifik yang meliputi bidang perubatan, kimia, biologi dan bidang lain, set data ini masih mempunyai beberapa kekurangan. Pertama, borang data adalah agak mudah, kebanyakannya adalah soalan aneka pilihan. Ia mudah dinilai, tetapi mengehadkan julat pemilihan jawapan model dan tidak dapat menguji sepenuhnya keupayaan model untuk menjawab soalan saintifik. Sebaliknya, Soal Jawab terbuka

Lima sekolah pembelajaran mesin yang anda tidak tahu Lima sekolah pembelajaran mesin yang anda tidak tahu Jun 05, 2024 pm 08:51 PM

Pembelajaran mesin ialah cabang penting kecerdasan buatan yang memberikan komputer keupayaan untuk belajar daripada data dan meningkatkan keupayaan mereka tanpa diprogramkan secara eksplisit. Pembelajaran mesin mempunyai pelbagai aplikasi dalam pelbagai bidang, daripada pengecaman imej dan pemprosesan bahasa semula jadi kepada sistem pengesyoran dan pengesanan penipuan, dan ia mengubah cara hidup kita. Terdapat banyak kaedah dan teori yang berbeza dalam bidang pembelajaran mesin, antaranya lima kaedah yang paling berpengaruh dipanggil "Lima Sekolah Pembelajaran Mesin". Lima sekolah utama ialah sekolah simbolik, sekolah sambungan, sekolah evolusi, sekolah Bayesian dan sekolah analogi. 1. Simbolisme, juga dikenali sebagai simbolisme, menekankan penggunaan simbol untuk penaakulan logik dan ekspresi pengetahuan. Aliran pemikiran ini percaya bahawa pembelajaran adalah proses penolakan terbalik, melalui sedia ada

Prestasi SOTA, kaedah AI ramalan pertalian protein-ligan pelbagai mod Xiamen, menggabungkan maklumat permukaan molekul buat kali pertama Prestasi SOTA, kaedah AI ramalan pertalian protein-ligan pelbagai mod Xiamen, menggabungkan maklumat permukaan molekul buat kali pertama Jul 17, 2024 pm 06:37 PM

Editor |. KX Dalam bidang penyelidikan dan pembangunan ubat, meramalkan pertalian pengikatan protein dan ligan dengan tepat dan berkesan adalah penting untuk pemeriksaan dan pengoptimuman ubat. Walau bagaimanapun, kajian semasa tidak mengambil kira peranan penting maklumat permukaan molekul dalam interaksi protein-ligan. Berdasarkan ini, penyelidik dari Universiti Xiamen mencadangkan rangka kerja pengekstrakan ciri berbilang mod (MFE) novel, yang buat pertama kalinya menggabungkan maklumat mengenai permukaan protein, struktur dan jujukan 3D, dan menggunakan mekanisme perhatian silang untuk membandingkan ciri modaliti yang berbeza penjajaran. Keputusan eksperimen menunjukkan bahawa kaedah ini mencapai prestasi terkini dalam meramalkan pertalian mengikat protein-ligan. Tambahan pula, kajian ablasi menunjukkan keberkesanan dan keperluan maklumat permukaan protein dan penjajaran ciri multimodal dalam rangka kerja ini. Penyelidikan berkaitan bermula dengan "S

AlphaFold 3 dilancarkan, meramalkan secara menyeluruh interaksi dan struktur protein dan semua molekul hidupan, dengan ketepatan yang jauh lebih tinggi berbanding sebelum ini AlphaFold 3 dilancarkan, meramalkan secara menyeluruh interaksi dan struktur protein dan semua molekul hidupan, dengan ketepatan yang jauh lebih tinggi berbanding sebelum ini Jul 16, 2024 am 12:08 AM

Editor |. Kulit Lobak Sejak pengeluaran AlphaFold2 yang berkuasa pada tahun 2021, saintis telah menggunakan model ramalan struktur protein untuk memetakan pelbagai struktur protein dalam sel, menemui ubat dan melukis "peta kosmik" setiap interaksi protein yang diketahui. Baru-baru ini, Google DeepMind mengeluarkan model AlphaFold3, yang boleh melakukan ramalan struktur bersama untuk kompleks termasuk protein, asid nukleik, molekul kecil, ion dan sisa yang diubah suai. Ketepatan AlphaFold3 telah dipertingkatkan dengan ketara berbanding dengan banyak alat khusus pada masa lalu (interaksi protein-ligan, interaksi asid protein-nukleik, ramalan antibodi-antigen). Ini menunjukkan bahawa dalam satu rangka kerja pembelajaran mendalam yang bersatu, adalah mungkin untuk dicapai

See all articles