Contoh asal dan kajian kes carta lukisan Python
Contoh asal dan kajian kes carta Python
Pengenalan:
Python ialah bahasa pengaturcaraan yang digunakan secara meluas dengan keupayaan pemprosesan data dan visualisasi yang berkuasa. Carta ialah salah satu alat visualisasi yang paling biasa dalam bidang seperti analisis data, penyelidikan saintifik dan membuat keputusan perniagaan. Artikel ini akan memperkenalkan cara menggunakan Python untuk melukis carta melalui contoh khusus dan analisis kes, dan melampirkan contoh kod terperinci.
1. Contoh carta garisan
Carta garis ialah ungkapan visual yang biasa digunakan, sesuai untuk menunjukkan arah aliran perubahan data dari semasa ke semasa atau pembolehubah lain.
Contoh 1:
Andaikan jualan syarikat direkodkan sepanjang tahun lalu dan kami menggunakan carta garisan untuk menunjukkan perubahan dalam jualan dari semasa ke semasa.
import matplotlib.pyplot as plt # 销售额数据 sales = [100, 150, 120, 180, 200, 250, 300, 280, 350, 400, 380, 450] # 月份数据 months = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec'] # 绘制折线图 plt.plot(months, sales) plt.title('Sales Trend') plt.xlabel('Month') plt.ylabel('Sales ($)') plt.show()
Jalankan kod di atas untuk menjana carta garisan yang menunjukkan arah aliran jualan dari semasa ke semasa.
Contoh 2:
Berdasarkan Contoh 1, kami juga merekodkan jualan barisan produk yang berbeza dan perlu menunjukkan trend setiap barisan produk.
import matplotlib.pyplot as plt # 产品销售额数据 product_a = [100, 150, 120, 180, 200, 250, 300, 280, 350, 400, 380, 450] product_b = [80, 120, 90, 150, 170, 200, 230, 210, 260, 300, 280, 330] product_c = [70, 90, 80, 120, 150, 180, 200, 190, 220, 270, 250, 300] # 月份数据 months = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec'] # 绘制折线图 plt.plot(months, product_a, label='Product A') plt.plot(months, product_b, label='Product B') plt.plot(months, product_c, label='Product C') plt.title('Sales Trend by Product') plt.xlabel('Month') plt.ylabel('Sales ($)') plt.legend() plt.show()
Jalankan kod di atas untuk menjana carta garisan yang menunjukkan trend jualan setiap barisan produk dari semasa ke semasa Melalui legenda, anda boleh melihat dengan jelas jualan setiap tiga produk.
2. Contoh Histogram
Histogram ialah ungkapan visual yang biasa digunakan, sesuai untuk membandingkan nilai antara kategori atau pembolehubah yang berbeza.
Contoh 3:
Andaikan jualan tahunan syarikat direkodkan, dan kami menggunakan carta palang untuk memaparkan jualan tahunan.
import matplotlib.pyplot as plt # 销售额数据 sales = [1000, 1200, 1500, 1800, 2000] # 年份数据 years = ['2014', '2015', '2016', '2017', '2018'] # 绘制柱状图 plt.bar(years, sales) plt.title('Annual Sales') plt.xlabel('Year') plt.ylabel('Sales ($)') plt.show()
Jalankan kod di atas untuk menjana carta bar yang menunjukkan jualan tahunan.
Contoh 4:
Berdasarkan Contoh 3, kami juga merekodkan jualan barisan produk yang berbeza, dan kami perlu menunjukkan jualan tahunan setiap barisan produk.
import matplotlib.pyplot as plt import numpy as np # 产品销售额数据 product_a = [1000, 1200, 1500, 1800, 2000] product_b = [800, 900, 1200, 1500, 1700] product_c = [600, 800, 1000, 1200, 1400] # 年份数据 years = ['2014', '2015', '2016', '2017', '2018'] # 绘制柱状图 x = np.arange(len(years)) width = 0.2 plt.bar(x - width, product_a, width, label='Product A') plt.bar(x, product_b, width, label='Product B') plt.bar(x + width, product_c, width, label='Product C') plt.title('Annual Sales by Product') plt.xlabel('Year') plt.ylabel('Sales ($)') plt.xticks(x, years) plt.legend() plt.show()
Jalankan kod di atas untuk menjana histogram yang menunjukkan jualan tahunan setiap barisan produk Melalui warna lajur dan legenda yang berbeza, anda boleh membandingkan dengan jelas jualan setiap produk pada setiap tahun.
Kesimpulan:
Carta ialah bahagian penting dalam visualisasi data dan boleh membantu kami memahami dan menganalisis data dengan lebih baik. Python menyediakan perpustakaan lukisan yang kaya dan berkuasa Artikel ini memperkenalkan kaedah menggunakan Python untuk melukis carta garis dan carta lajur melalui contoh dan analisis kes, dan menyediakan contoh kod khusus. Saya harap pembaca boleh menggunakan Python dengan lebih baik untuk visualisasi data melalui panduan artikel ini.
Atas ialah kandungan terperinci Contoh asal dan kajian kes carta lukisan Python. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas



MySQL mempunyai versi komuniti percuma dan versi perusahaan berbayar. Versi komuniti boleh digunakan dan diubahsuai secara percuma, tetapi sokongannya terhad dan sesuai untuk aplikasi dengan keperluan kestabilan yang rendah dan keupayaan teknikal yang kuat. Edisi Enterprise menyediakan sokongan komersil yang komprehensif untuk aplikasi yang memerlukan pangkalan data yang stabil, boleh dipercayai, berprestasi tinggi dan bersedia membayar sokongan. Faktor yang dipertimbangkan apabila memilih versi termasuk kritikal aplikasi, belanjawan, dan kemahiran teknikal. Tidak ada pilihan yang sempurna, hanya pilihan yang paling sesuai, dan anda perlu memilih dengan teliti mengikut keadaan tertentu.

Artikel ini memperkenalkan operasi pangkalan data MySQL. Pertama, anda perlu memasang klien MySQL, seperti MySqlworkbench atau Command Line Client. 1. Gunakan perintah MySQL-Uroot-P untuk menyambung ke pelayan dan log masuk dengan kata laluan akaun root; 2. Gunakan CreateTatabase untuk membuat pangkalan data, dan gunakan Pilih pangkalan data; 3. Gunakan createtable untuk membuat jadual, menentukan medan dan jenis data; 4. Gunakan InsertInto untuk memasukkan data, data pertanyaan, kemas kini data dengan kemas kini, dan padam data dengan padam. Hanya dengan menguasai langkah -langkah ini, belajar menangani masalah biasa dan mengoptimumkan prestasi pangkalan data anda boleh menggunakan MySQL dengan cekap.

Tidak mustahil untuk melihat kata laluan MongoDB secara langsung melalui Navicat kerana ia disimpan sebagai nilai hash. Cara mendapatkan kata laluan yang hilang: 1. Tetapkan semula kata laluan; 2. Periksa fail konfigurasi (mungkin mengandungi nilai hash); 3. Semak Kod (boleh kata laluan Hardcode).

MySQL boleh berjalan tanpa sambungan rangkaian untuk penyimpanan dan pengurusan data asas. Walau bagaimanapun, sambungan rangkaian diperlukan untuk interaksi dengan sistem lain, akses jauh, atau menggunakan ciri -ciri canggih seperti replikasi dan clustering. Di samping itu, langkah -langkah keselamatan (seperti firewall), pengoptimuman prestasi (pilih sambungan rangkaian yang betul), dan sandaran data adalah penting untuk menyambung ke Internet.

Panduan Pengoptimuman Prestasi Pangkalan Data MySQL Dalam aplikasi yang berintensifkan sumber, pangkalan data MySQL memainkan peranan penting dan bertanggungjawab untuk menguruskan urus niaga besar-besaran. Walau bagaimanapun, apabila skala aplikasi berkembang, kemunculan prestasi pangkalan data sering menjadi kekangan. Artikel ini akan meneroka satu siri strategi pengoptimuman prestasi MySQL yang berkesan untuk memastikan aplikasi anda tetap cekap dan responsif di bawah beban tinggi. Kami akan menggabungkan kes-kes sebenar untuk menerangkan teknologi utama yang mendalam seperti pengindeksan, pengoptimuman pertanyaan, reka bentuk pangkalan data dan caching. 1. Reka bentuk seni bina pangkalan data dan seni bina pangkalan data yang dioptimumkan adalah asas pengoptimuman prestasi MySQL. Berikut adalah beberapa prinsip teras: Memilih jenis data yang betul dan memilih jenis data terkecil yang memenuhi keperluan bukan sahaja dapat menjimatkan ruang penyimpanan, tetapi juga meningkatkan kelajuan pemprosesan data.

Hadidb: Pangkalan data Python yang ringan, tinggi, Hadidb (Hadidb) adalah pangkalan data ringan yang ditulis dalam Python, dengan tahap skalabilitas yang tinggi. Pasang HadIdb menggunakan pemasangan PIP: Pengurusan Pengguna PipInstallHadidB Buat Pengguna: CreateUser () Kaedah untuk membuat pengguna baru. Kaedah pengesahan () mengesahkan identiti pengguna. dariHadidb.OperationImportuserer_Obj = user ("admin", "admin") user_obj.

MySQL Workbench boleh menyambung ke MariaDB, dengan syarat bahawa konfigurasi adalah betul. Mula -mula pilih "MariaDB" sebagai jenis penyambung. Dalam konfigurasi sambungan, tetapkan host, port, pengguna, kata laluan, dan pangkalan data dengan betul. Apabila menguji sambungan, periksa bahawa perkhidmatan MariaDB dimulakan, sama ada nama pengguna dan kata laluan betul, sama ada nombor port betul, sama ada firewall membenarkan sambungan, dan sama ada pangkalan data itu wujud. Dalam penggunaan lanjutan, gunakan teknologi penyatuan sambungan untuk mengoptimumkan prestasi. Kesilapan biasa termasuk kebenaran yang tidak mencukupi, masalah sambungan rangkaian, dan lain -lain. Apabila kesilapan debugging, dengan teliti menganalisis maklumat ralat dan gunakan alat penyahpepijatan. Mengoptimumkan konfigurasi rangkaian dapat meningkatkan prestasi

Untuk persekitaran pengeluaran, pelayan biasanya diperlukan untuk menjalankan MySQL, atas alasan termasuk prestasi, kebolehpercayaan, keselamatan, dan skalabilitas. Pelayan biasanya mempunyai perkakasan yang lebih kuat, konfigurasi berlebihan dan langkah keselamatan yang lebih ketat. Untuk aplikasi kecil, rendah, MySQL boleh dijalankan pada mesin tempatan, tetapi penggunaan sumber, risiko keselamatan dan kos penyelenggaraan perlu dipertimbangkan dengan teliti. Untuk kebolehpercayaan dan keselamatan yang lebih besar, MySQL harus digunakan di awan atau pelayan lain. Memilih konfigurasi pelayan yang sesuai memerlukan penilaian berdasarkan beban aplikasi dan jumlah data.
