


Lebih banyak perkataan dalam dokumen, lebih teruja model itu! KOSMOS-2.5: Model bahasa besar berbilang modal untuk membaca 'imej padat teks'
Arah aliran yang jelas pada masa ini adalah ke arah membina model yang lebih besar dan lebih kompleks dengan puluhan/ratusan bilion parameter yang mampu menjana output bahasa yang mengagumkan
Walau bagaimanapun, model bahasa besar sedia ada Terutamanya tertumpu pada maklumat teks dan tidak dapat memahami maklumat visual.
Jadi kemajuan dalam bidang Multimodal Large Language Models (MLLMs) bertujuan untuk menangani had ini, MLLMs menggabungkan maklumat visual dan tekstual ke dalam satu model berasaskan Transformer, membolehkan model menyesuaikan diri dengan kedua-dua modaliti Belajar dan menjana kandungan.
MLLM menunjukkan potensi dalam pelbagai aplikasi praktikal, termasuk pemahaman imej semula jadi dan pemahaman imej teks. Model ini memanfaatkan pemodelan bahasa sebagai antara muka biasa untuk mengendalikan masalah berbilang modal, membolehkan mereka memproses dan menjana respons berdasarkan input teks dan visual
Walau bagaimanapun, pada masa ini tumpuan utama adalah pada MLLM imej semula jadi dengan resolusi rendah, yang padat untuk teks Terdapat sedikit kajian mengenai imej. Oleh itu, menggunakan sepenuhnya pra-latihan pelbagai mod berskala besar untuk memproses imej teks telah menjadi hala tuju penting penyelidikan MLLM
Dengan memasukkan imej teks ke dalam proses latihan dan membangunkan model berdasarkan maklumat teks dan visual, kami boleh membuka jalan baharu yang melibatkan resolusi tinggi Kemungkinan baharu untuk aplikasi pelbagai mod imej padat teks. . dibangunkan di KOSMOS- Dibangunkan berdasarkan 2, ia menyerlahkan keupayaan membaca dan memahami pelbagai mod imej intensif teks (Model Celik Pelbagai Modal).
Cadangan model ini menyerlahkan prestasi cemerlangnya dalam memahami imej intensif teks, merapatkan jurang antara penglihatan dan teks
Seperti yang ditunjukkan dalam Rajah 2, kedua-dua tugas menggunakan seni bina pengubah bersama dan petunjuk khusus tugas
Kosmos-2.5 menggabungkan pengekod visual berdasarkan ViT (Pengubah Penglihatan) dengan penyahkod berdasarkan seni bina Transformer, disambungkan melalui modul pensampelan semula.
Untuk melatih model ini, penulis menyediakan set data yang besar dengan saiz 324.4M, seperti ditunjukkan dalam Rajah 3
Rajah 4: Contoh sampel latihan untuk baris teks dengan kotak sempadan
Rajah 5: Contoh sampel latihan dalam format Markdown
ini mengandungi pelbagai jenis imej padat teks tersebut dengan baris Teks dengan kotak sempadan dan teks biasa dalam format Markdown Rajah 4 dan 5 adalah contoh visualisasi latihan. Kaedah latihan pelbagai tugas ini meningkatkan keupayaan pelbagai mod keseluruhan KOSMOS-2.5 keupayaan yang menjanjikan dalam kedua-dua senario pembelajaran beberapa pukulan dan pembelajaran sifar pukulan, menjadikannya alat serba boleh untuk aplikasi praktikal dalam memproses imej kaya teks. Ia boleh dianggap sebagai alat serba boleh yang boleh mengendalikan imej kaya teks dengan berkesan dan menunjukkan keupayaan yang menjanjikan dalam kes pembelajaran beberapa pukulan dan pembelajaran sifar pukulan Pengarang menunjukkan bahawa penalaan halus arahan adalah sangat menjanjikan. Kaedah prospek boleh mencapai keupayaan aplikasi yang lebih luas bagi model. Dalam bidang penyelidikan yang lebih luas, hala tuju penting terletak pada mengembangkan lagi keupayaan untuk mengembangkan parameter model. Memandangkan skop dan kerumitan tugas terus berkembang, model penskalaan untuk mengendalikan jumlah data yang lebih besar adalah penting untuk pembangunan model berbilang modal intensif teks. Matlamat utama adalah untuk membangunkan model yang boleh mentafsir data visual dan teks dengan berkesan dan berjaya membuat generalisasi kepada tugasan pelbagai mod yang lebih intensif teks. Apabila menulis semula kandungan, ia perlu ditulis semula ke dalam bahasa Cina, dan ayat asal tidak perlu muncul https://arxiv.org/abs/2309.11419. 2.5 Ia dinilai berdasarkan dua tugas: pengecaman teks peringkat dokumen hujung ke hujung dan penjanaan teks berformat Markdown daripada imej.
KOSMOS-2.5 berfungsi dengan baik dalam memproses tugasan imej intensif teks, dan keputusan percubaan menunjukkan perkara ini
Atas ialah kandungan terperinci Lebih banyak perkataan dalam dokumen, lebih teruja model itu! KOSMOS-2.5: Model bahasa besar berbilang modal untuk membaca 'imej padat teks'. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas



Bayangkan model kecerdasan buatan yang bukan sahaja mempunyai keupayaan untuk mengatasi pengkomputeran tradisional, tetapi juga mencapai prestasi yang lebih cekap pada kos yang lebih rendah. Ini bukan fiksyen sains, DeepSeek-V2[1], model MoE sumber terbuka paling berkuasa di dunia ada di sini. DeepSeek-V2 ialah gabungan model bahasa pakar (MoE) yang berkuasa dengan ciri-ciri latihan ekonomi dan inferens yang cekap. Ia terdiri daripada 236B parameter, 21B daripadanya digunakan untuk mengaktifkan setiap penanda. Berbanding dengan DeepSeek67B, DeepSeek-V2 mempunyai prestasi yang lebih kukuh, sambil menjimatkan 42.5% kos latihan, mengurangkan cache KV sebanyak 93.3% dan meningkatkan daya pemprosesan penjanaan maksimum kepada 5.76 kali. DeepSeek ialah sebuah syarikat yang meneroka kecerdasan buatan am

AI memang mengubah matematik. Baru-baru ini, Tao Zhexuan, yang telah mengambil perhatian terhadap isu ini, telah memajukan keluaran terbaru "Buletin Persatuan Matematik Amerika" (Buletin Persatuan Matematik Amerika). Memfokuskan pada topik "Adakah mesin akan mengubah matematik?", ramai ahli matematik menyatakan pendapat mereka Seluruh proses itu penuh dengan percikan api, tegar dan menarik. Penulis mempunyai barisan yang kuat, termasuk pemenang Fields Medal Akshay Venkatesh, ahli matematik China Zheng Lejun, saintis komputer NYU Ernest Davis dan ramai lagi sarjana terkenal dalam industri. Dunia AI telah berubah secara mendadak Anda tahu, banyak artikel ini telah dihantar setahun yang lalu.

Boston Dynamics Atlas secara rasmi memasuki era robot elektrik! Semalam, Atlas hidraulik hanya "menangis" menarik diri daripada peringkat sejarah Hari ini, Boston Dynamics mengumumkan bahawa Atlas elektrik sedang berfungsi. Nampaknya dalam bidang robot humanoid komersial, Boston Dynamics berazam untuk bersaing dengan Tesla. Selepas video baharu itu dikeluarkan, ia telah pun ditonton oleh lebih sejuta orang dalam masa sepuluh jam sahaja. Orang lama pergi dan peranan baru muncul. Ini adalah keperluan sejarah. Tidak dinafikan bahawa tahun ini adalah tahun letupan robot humanoid. Netizen mengulas: Kemajuan robot telah menjadikan majlis pembukaan tahun ini kelihatan seperti manusia, dan tahap kebebasan adalah jauh lebih besar daripada manusia Tetapi adakah ini benar-benar bukan filem seram? Pada permulaan video, Atlas berbaring dengan tenang di atas tanah, seolah-olah terlentang. Apa yang berikut adalah rahang-jatuh

Awal bulan ini, penyelidik dari MIT dan institusi lain mencadangkan alternatif yang sangat menjanjikan kepada MLP - KAN. KAN mengatasi MLP dari segi ketepatan dan kebolehtafsiran. Dan ia boleh mengatasi prestasi MLP berjalan dengan bilangan parameter yang lebih besar dengan bilangan parameter yang sangat kecil. Sebagai contoh, penulis menyatakan bahawa mereka menggunakan KAN untuk menghasilkan semula keputusan DeepMind dengan rangkaian yang lebih kecil dan tahap automasi yang lebih tinggi. Khususnya, MLP DeepMind mempunyai kira-kira 300,000 parameter, manakala KAN hanya mempunyai kira-kira 200 parameter. KAN mempunyai asas matematik yang kukuh seperti MLP berdasarkan teorem penghampiran universal, manakala KAN berdasarkan teorem perwakilan Kolmogorov-Arnold. Seperti yang ditunjukkan dalam rajah di bawah, KAN telah

Video terbaru robot Tesla Optimus dikeluarkan, dan ia sudah boleh berfungsi di kilang. Pada kelajuan biasa, ia mengisih bateri (bateri 4680 Tesla) seperti ini: Pegawai itu juga mengeluarkan rupanya pada kelajuan 20x - pada "stesen kerja" kecil, memilih dan memilih dan memilih: Kali ini ia dikeluarkan Salah satu sorotan video itu ialah Optimus menyelesaikan kerja ini di kilang, sepenuhnya secara autonomi, tanpa campur tangan manusia sepanjang proses. Dan dari perspektif Optimus, ia juga boleh mengambil dan meletakkan bateri yang bengkok, memfokuskan pada pembetulan ralat automatik: Berkenaan tangan Optimus, saintis NVIDIA Jim Fan memberikan penilaian yang tinggi: Tangan Optimus adalah robot lima jari di dunia paling cerdik. Tangannya bukan sahaja boleh disentuh

Pengesanan objek ialah masalah yang agak matang dalam sistem pemanduan autonomi, antaranya pengesanan pejalan kaki adalah salah satu algoritma terawal untuk digunakan. Penyelidikan yang sangat komprehensif telah dijalankan dalam kebanyakan kertas kerja. Walau bagaimanapun, persepsi jarak menggunakan kamera fisheye untuk pandangan sekeliling agak kurang dikaji. Disebabkan herotan jejari yang besar, perwakilan kotak sempadan standard sukar dilaksanakan dalam kamera fisheye. Untuk mengurangkan perihalan di atas, kami meneroka kotak sempadan lanjutan, elips dan reka bentuk poligon am ke dalam perwakilan kutub/sudut dan mentakrifkan metrik mIOU pembahagian contoh untuk menganalisis perwakilan ini. Model fisheyeDetNet yang dicadangkan dengan bentuk poligon mengatasi model lain dan pada masa yang sama mencapai 49.5% mAP pada set data kamera fisheye Valeo untuk pemanduan autonomi

Pautan projek ditulis di hadapan: https://nianticlabs.github.io/mickey/ Memandangkan dua gambar, pose kamera di antara mereka boleh dianggarkan dengan mewujudkan kesesuaian antara gambar. Biasanya, surat-menyurat ini adalah 2D hingga 2D, dan anggaran pose kami adalah skala-tak tentu. Sesetengah aplikasi, seperti realiti tambahan segera pada bila-bila masa, di mana-mana sahaja, memerlukan anggaran pose metrik skala, jadi mereka bergantung pada penganggar kedalaman luaran untuk memulihkan skala. Makalah ini mencadangkan MicKey, proses pemadanan titik utama yang mampu meramalkan korespondensi metrik dalam ruang kamera 3D. Dengan mempelajari padanan koordinat 3D merentas imej, kami dapat membuat kesimpulan relatif metrik

FP8 dan ketepatan pengiraan titik terapung yang lebih rendah bukan lagi "paten" H100! Lao Huang mahu semua orang menggunakan INT8/INT4, dan pasukan Microsoft DeepSpeed memaksa diri mereka menjalankan FP6 pada A100 tanpa sokongan rasmi daripada Nvidia. Keputusan ujian menunjukkan bahawa kaedah baharu TC-FPx FP6 kuantisasi pada A100 adalah hampir atau kadangkala lebih pantas daripada INT4, dan mempunyai ketepatan yang lebih tinggi daripada yang terakhir. Selain itu, terdapat juga sokongan model besar hujung ke hujung, yang telah bersumberkan terbuka dan disepadukan ke dalam rangka kerja inferens pembelajaran mendalam seperti DeepSpeed. Keputusan ini juga mempunyai kesan serta-merta pada mempercepatkan model besar - di bawah rangka kerja ini, menggunakan satu kad untuk menjalankan Llama, daya pemprosesan adalah 2.65 kali lebih tinggi daripada dua kad. satu
