


Memperbaik kaedah perancangan trajektori untuk pemanduan autonomi dalam persekitaran yang tidak menentu
Tajuk tesis: "Kaedah perancangan trajektori untuk kenderaan autonomi dalam persekitaran yang tidak menentu berdasarkan kawalan ramalan model yang dipertingkatkan"
Jurnal yang diterbitkan: Transaksi IEEE mengenai Sistem Pengangkutan Pintar
Tarikh penerbitan: April 2023
Bacaan saya sendiri terutamanya bahagian yang saya fikir adalah perkara utama, bukan terjemahan teks penuh Artikel ini mengikuti artikel sebelumnya dan menyusun bahagian pengesahan percubaan kertas ini. Artikel sebelum ini adalah seperti berikut: Berikut adalah nota pembacaan kertas saya sendiri, terutamanya bahagian yang saya fikir adalah perkara utama, bukan terjemahan teks penuh Artikel ini mengikuti artikel sebelumnya dan menyusun bahagian pengesahan eksperimen kertas ini. Artikel sebelum ini adalah seperti berikut:
fhwim: Kaedah perancangan trajektori berdasarkan kawalan ramalan model yang dipertingkatkan untuk kenderaan autonomi dalam persekitaran yang tidak menentu
https://zhuanlan.zhihu.com/p/658708080
1 (1) Persekitaran simulasi
Alat simulasi bersama termasuk Prescan, PyCharm, Matlab/Simulink, antaranya Prescan digunakan untuk membina adegan trafik simulasi, dan PyCharm (dengan rangkaian neural atau pytorch dengan mudah) digunakan untuk menulis modul ramalan gabungan , Matlab/Simulink (dengan kotak alat MPC) digunakan untuk membina modul perancangan trajektori dan merealisasikan kawalan kenderaan Keseluruhan idea pemilihan alat adalah agak semula jadi dan munasabah. Kawalan mendatar yang digunakan untuk mengawal bahagian ini ialah LQR, dan kawalan menegak menggunakan PID, yang juga merupakan kaedah kawalan yang agak biasa. Penyahkod pengekod LSTM dalam modul ramalan gabungan menggunakan kod sumber terbuka. Penulis berkata ia datang daripada rujukan [31] Kajian Komprehensif Selang Ramalan Berasaskan Rangkaian Neural dan Pendahuluan Baharu, tetapi saya melihat bahawa artikel ini diterbitkan pada tahun 2011. Ia agak lama (di manakah kod pengekod LSTM pada tahun 2011? Saya tidak tahu sama ada pengarang telah menukar kod berdasarkan ini.
Rajah 1 Persediaan persekitaran simulasi
(2) Mendapatkan set MRPI
set subsistem MRPI
(3) kes1: pengelakan statik Adegan halangan
Adegan mengelak halangan statik merujuk kepada pegun kenderaan halangan Hasil perancangan trajektori adalah seperti berikut:
Bandingkan kaedah MPC umum dan kaedah MPC berasaskan saluran paip dalam Rajah 3
Di sini saya mengesyaki bahawa dia mempunyai legen. Soalan, mengikut artikel sebelum ini, trajektori rujukan akhir diperolehi dengan menambah trajektori yang dikehendaki dan trajektori pelarasan Pada masa yang sama, ketika menganalisis keputusan, beliau juga mengatakan bahawa MPC berasaskan tiub berada di kawasan dan. dalam Rajah 3(b). ) harus ditukar, iaitu garisan hijau ialah trajektori rujukan akhir. Termasuk lengkung kelajuan dan lengkung ralat mendatar dan menegak di bawah, tetapi anda mungkin boleh memahami maksud pengarang Lengkung hijau dalam MPC berasaskan tiub ialah hasil akhir, dan lengkung biru ialah hasil tanpa trajektori pelarasan.
Rajah 4 menunjukkan perbandingan perubahan kelajuan antara kaedah MPC am dan kaedah MPC berasaskan saluran paip
Rajah 5 Perbandingan kedudukan melintang
ralat mendatar dan menegak Rajah 6
Penulis juga membandingkan kelancaran perubahan sudut stereng, yang tidak akan saya jelaskan secara terperinci di sini, ia telah bertambah baik. Pada masa yang sama, penulis mencadangkan asas teori untuk kesan baik melaraskan trajektori Selepas menambahnya, ralat trajektori sentiasa berada dalam set MRPI, iaitu sisihan penjejakan bagi kawalan ramalan model berasaskan tiub (MPC berasaskan tiub) sentiasa berada dalam set MRPI Kawalan ramalan model umum (MPC) tidak mempunyai sempadan dalam persekitaran yang tidak menentu, yang mungkin sangat besar
(4) kes2: adegan pengelakan halangan dinamik
Berbanding dengan. adegan tadi, kini kereta penghalang mula bergerak. Kami tidak akan membincangkan secara terperinci tentang trajektori keseluruhan, perubahan kelajuan, ralat mendatar dan menegak, dan kelancaran perubahan stereng. Di sini, hanya ilustrasi trajektori keseluruhan ditunjukkan
Rajah 7 Perbandingan keseluruhan trajektori antara kaedah MPC am dan kaedah MPC berasaskan tiub
(5) kes3: adegan pemanduan sebenar
Di sini, pengarang memilih untuk menggunakan set data NGSIM untuk mengesahkan kaedah anda. Pertama, penulis mengesahkan kaedah ramalan gabungan. Set data NGSIM mengandungi data trajektori kenderaan, yang pengarang dibahagikan kepada trajektori sejarah dan trajektori masa depan, dan membina set latihan untuk penyahkod pengekod LSTM untuk dipelajari. Penulis memilih 10,000 trajektori yang mana 7,500 daripadanya digunakan sebagai set latihan dan 2,500 sebagai set pengesahan. Pengoptimum mengambil Adam dan menetapkan kadar pembelajaran kepada 0.01. Kesan ramalan ditunjukkan dalam rajah di bawah
Rajah 8 Keputusan ramalan trajektori mendatar dan menegak dan ketidakpastian
Dalam artikel ini, penulis tidak menggunakan penunjuk yang biasa digunakan dalam bidang ramalan trajektori, seperti ADE, FDE, dsb. Saya rasa pendekatan ini tidak meyakinkan, tetapi ia juga boleh difahami bahawa fokus artikel ini adalah perancangan trajektori berdasarkan MPC berasaskan tiub
Selepas mengesahkan ramalan trajektori, perancangan trajektori telah dilakukan untuk mengesahkan lagi peranan modul ramalan trajektori . Berikut adalah perbandingan Terdapat tiga situasi:
(a) Apabila saya sudah tahu trajektori masa depan sebenar kereta halangan, saya akan menjalankan perancangan trajektori Ini berfungsi sebagai kumpulan kawalan
Apabila saya tidak tahu masa depan trajektori kereta halangan, saya akan lakukannya dahulu Ramalan Trajektori (tetapi bukan mengira ketidakpastian), dan kemudian perancangan trajektori
(c) Apabila saya tidak tahu trajektori masa depan kereta halangan, saya mula-mula melakukan ramalan trajektori (mengira ketidakpastian), dan kemudian perancangan trajektori
Rajah 9 menunjukkan keputusan (a), (b) dan (c), masing-masing sepadan dengan Kedudukan Benar, Keputusan Ramalan dan Kaedah Cadangan
Cadangan Kaedah ialah hasil yang diperolehi oleh kaedah dalam artikel ini. Anda boleh melihat bahawa Kaedah Cadangan adalah lebih dekat Kedudukan Benar menunjukkan bahawa kaedah ramalan gabungan ini (terutamanya pengiraan ketidakpastian) adalah berkesan.
Rajah 9 Perbandingan tiga kaedah untuk mengesahkan modul ramalan trajektori
Di sini anda boleh menemui kes1 dan kes2 mengesahkan bahagian perancangan trajektori di hadapan kawalan ramalan model am (MPC) dan saluran paip -berasaskan MPC adalah sama, perbandingan ini boleh menggambarkan peranan MPC berasaskan saluran paip. Case3 adalah untuk mengesahkan modul ramalan trajektori Anda boleh melihat bahawa dua jenis pengesahan telah dilakukan. Jenis pertama adalah untuk membandingkan secara langsung trajektori yang diramalkan dan trajektori sebenar, dan jenis kedua adalah untuk terlebih dahulu mengetahui trajektori masa depan / meramalkan trajektori masa depan (tanpa mengira ketidakpastian) / meramalkan trajektori masa depan (mengira ketidakpastian), dan kemudian melakukan trajektori perancangan. Dengan menggunakan kedudukan sebenar sebagai piawai, kesan kaedah ramalan trajektori dengan pengiraan ketidakpastian dan kaedah ramalan trajektori tanpa pengiraan ketidakpastian dibandingkan. Idea pengesahan untuk kedua-dua modul ini masih sangat jelas
2. Pengesahan eksperimen kenderaan sebenar
Kenderaan yang digunakan dalam eksperimen ditunjukkan dalam gambar di bawah:
Kandungan yang perlu ditulis semula ialah: kenderaan yang digunakan dalam eksperimen Gambar 10
Pengarang juga menyediakan parameter kenderaan eksperimen dan parameter komputer serta sensor yang digunakan dalam eksperimen:
Kandungan yang perlu ditulis semula ialah: Rajah 11 The parameter komputer dan penderia
perlu ditulis semula Kandungannya ialah: Parameter kenderaan eksperimen, Rajah 12
Demi keselamatan, adegan eksperimen yang ditetapkan oleh pengarang adalah sama dengan kes eksperimen simulasi 1. Ia adalah adegan mengelakkan halangan statik Adalah lebih baik untuk membandingkan trajektori keseluruhan, perubahan kelajuan, ralat mendatar dan menegak. dan kelancaran perubahan stereng, yang tidak akan diterangkan secara terperinci.
3. Ringkasan bacaan
Pertama sekali, idea kertas itu adalah mengenai modul ramalan trajektori dengan pengiraan ketidakpastian dan modul perancangan trajektori berdasarkan MPC berasaskan tiub. Antaranya, modul perancangan trajektori merupakan kandungan utama. Saya sangat berpuas hati dengan bentuk modular ini kerana ia benar-benar menggunakan ramalan trajektori kepada perancangan trajektori. Output ramalan digunakan sebagai input perancangan, dan modul perancangan hanya menentukan ambang keselamatan untuk modul ramalan, dan gandingan antara kedua-dua modul adalah lemah. Dalam erti kata lain, modul ramalan boleh digantikan dengan kaedah lain selagi ia dapat memberikan hasil ramalan trajektori dan ketidakpastian kereta halangan. Pada masa hadapan, rangkaian saraf yang lebih maju boleh dipertimbangkan untuk meramalkan secara langsung trajektori dan ketidakpastian. Secara keseluruhan, proses algoritma ramalan gabungan ini agak rumit, tetapi saya fikir idea kertas itu sangat bagus. Idea dan beban kerja simulasi dan ujian kenderaan sebenar juga memuaskan
Kedua, terdapat beberapa ralat peringkat rendah ditemui semasa membaca artikel. Sebagai contoh, dalam bahagian penyahkod pengekod LSTM, output LSTM ialah titik trajektori masa hadapan langkah, yang juga ditulis dalam formula, tetapi dalam teks ia ditulis sebagai . . (32) dan (34), tetapi Sebenarnya subsistem (30) dan (32), kesilapan kecil ini tidak menjejaskan kaedah keseluruhan tetapi juga akan menjejaskan pengalaman membaca pembaca.
Rajah 14 Bahagian eksperimen simulasi MRPI Tetapkan teks asal
Sistem ralat dalam Rajah 15 dibahagikan kepada subsistem (30) dan (32)
pautan teks asal . weixin.qq.com/s/0DymvaPmiCc_tf3pUArRiA
Atas ialah kandungan terperinci Memperbaik kaedah perancangan trajektori untuk pemanduan autonomi dalam persekitaran yang tidak menentu. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas

Ditulis di atas & pemahaman peribadi pengarang Gaussiansplatting tiga dimensi (3DGS) ialah teknologi transformatif yang telah muncul dalam bidang medan sinaran eksplisit dan grafik komputer dalam beberapa tahun kebelakangan ini. Kaedah inovatif ini dicirikan oleh penggunaan berjuta-juta Gaussians 3D, yang sangat berbeza daripada kaedah medan sinaran saraf (NeRF), yang terutamanya menggunakan model berasaskan koordinat tersirat untuk memetakan koordinat spatial kepada nilai piksel. Dengan perwakilan adegan yang eksplisit dan algoritma pemaparan yang boleh dibezakan, 3DGS bukan sahaja menjamin keupayaan pemaparan masa nyata, tetapi juga memperkenalkan tahap kawalan dan pengeditan adegan yang tidak pernah berlaku sebelum ini. Ini meletakkan 3DGS sebagai penukar permainan yang berpotensi untuk pembinaan semula dan perwakilan 3D generasi akan datang. Untuk tujuan ini, kami menyediakan gambaran keseluruhan sistematik tentang perkembangan dan kebimbangan terkini dalam bidang 3DGS buat kali pertama.

Semalam semasa temu bual, saya telah ditanya sama ada saya telah membuat sebarang soalan berkaitan ekor panjang, jadi saya fikir saya akan memberikan ringkasan ringkas. Masalah ekor panjang pemanduan autonomi merujuk kepada kes tepi dalam kenderaan autonomi, iaitu, kemungkinan senario dengan kebarangkalian yang rendah untuk berlaku. Masalah ekor panjang yang dirasakan adalah salah satu sebab utama yang kini mengehadkan domain reka bentuk pengendalian kenderaan autonomi pintar satu kenderaan. Seni bina asas dan kebanyakan isu teknikal pemanduan autonomi telah diselesaikan, dan baki 5% masalah ekor panjang secara beransur-ansur menjadi kunci untuk menyekat pembangunan pemanduan autonomi. Masalah ini termasuk pelbagai senario yang berpecah-belah, situasi yang melampau dan tingkah laku manusia yang tidak dapat diramalkan. "Ekor panjang" senario tepi dalam pemanduan autonomi merujuk kepada kes tepi dalam kenderaan autonomi (AVs) kes Edge adalah senario yang mungkin dengan kebarangkalian yang rendah untuk berlaku. kejadian yang jarang berlaku ini

Ramalan trajektori memainkan peranan penting dalam pemanduan autonomi Ramalan trajektori pemanduan autonomi merujuk kepada meramalkan trajektori pemanduan masa hadapan kenderaan dengan menganalisis pelbagai data semasa proses pemanduan kenderaan. Sebagai modul teras pemanduan autonomi, kualiti ramalan trajektori adalah penting untuk kawalan perancangan hiliran. Tugas ramalan trajektori mempunyai timbunan teknologi yang kaya dan memerlukan kebiasaan dengan persepsi dinamik/statik pemanduan autonomi, peta ketepatan tinggi, garisan lorong, kemahiran seni bina rangkaian saraf (CNN&GNN&Transformer), dll. Sangat sukar untuk bermula! Ramai peminat berharap untuk memulakan ramalan trajektori secepat mungkin dan mengelakkan perangkap Hari ini saya akan mengambil kira beberapa masalah biasa dan kaedah pembelajaran pengenalan untuk ramalan trajektori! Pengetahuan berkaitan pengenalan 1. Adakah kertas pratonton teratur? A: Tengok survey dulu, hlm

0. Ditulis di hadapan&& Pemahaman peribadi bahawa sistem pemanduan autonomi bergantung pada persepsi lanjutan, membuat keputusan dan teknologi kawalan, dengan menggunakan pelbagai penderia (seperti kamera, lidar, radar, dll.) untuk melihat persekitaran sekeliling dan menggunakan algoritma dan model untuk analisis masa nyata dan membuat keputusan. Ini membolehkan kenderaan mengenali papan tanda jalan, mengesan dan menjejaki kenderaan lain, meramalkan tingkah laku pejalan kaki, dsb., dengan itu selamat beroperasi dan menyesuaikan diri dengan persekitaran trafik yang kompleks. Teknologi ini kini menarik perhatian meluas dan dianggap sebagai kawasan pembangunan penting dalam pengangkutan masa depan satu. Tetapi apa yang menyukarkan pemanduan autonomi ialah memikirkan cara membuat kereta itu memahami perkara yang berlaku di sekelilingnya. Ini memerlukan algoritma pengesanan objek tiga dimensi dalam sistem pemanduan autonomi boleh melihat dan menerangkan dengan tepat objek dalam persekitaran sekeliling, termasuk lokasinya,

Kertas StableDiffusion3 akhirnya di sini! Model ini dikeluarkan dua minggu lalu dan menggunakan seni bina DiT (DiffusionTransformer) yang sama seperti Sora. Ia menimbulkan kekecohan apabila ia dikeluarkan. Berbanding dengan versi sebelumnya, kualiti imej yang dijana oleh StableDiffusion3 telah dipertingkatkan dengan ketara Ia kini menyokong gesaan berbilang tema, dan kesan penulisan teks juga telah dipertingkatkan, dan aksara bercelaru tidak lagi muncul. StabilityAI menegaskan bahawa StableDiffusion3 ialah satu siri model dengan saiz parameter antara 800M hingga 8B. Julat parameter ini bermakna model boleh dijalankan terus pada banyak peranti mudah alih, dengan ketara mengurangkan penggunaan AI

Tajuk asal: SIMPL: ASimpleandEfficientMulti-agentMotionPredictionBaselineforAutonomousDriving Paper pautan: https://arxiv.org/pdf/2402.02519.pdf Pautan kod: https://github.com/HKUST-Aerial-Robotics/SIMPL Unit pengarang: Universiti Sains Hong Kong dan Teknologi Idea Kertas DJI: Kertas kerja ini mencadangkan garis dasar ramalan pergerakan (SIMPL) yang mudah dan cekap untuk kenderaan autonomi. Berbanding dengan agen-sen tradisional

Ditulis di hadapan & titik permulaan Paradigma hujung ke hujung menggunakan rangka kerja bersatu untuk mencapai pelbagai tugas dalam sistem pemanduan autonomi. Walaupun kesederhanaan dan kejelasan paradigma ini, prestasi kaedah pemanduan autonomi hujung ke hujung pada subtugas masih jauh ketinggalan berbanding kaedah tugasan tunggal. Pada masa yang sama, ciri pandangan mata burung (BEV) padat yang digunakan secara meluas dalam kaedah hujung ke hujung sebelum ini menyukarkan untuk membuat skala kepada lebih banyak modaliti atau tugasan. Paradigma pemanduan autonomi hujung ke hujung (SparseAD) tertumpu carian jarang dicadangkan di sini, di mana carian jarang mewakili sepenuhnya keseluruhan senario pemanduan, termasuk ruang, masa dan tugas, tanpa sebarang perwakilan BEV yang padat. Khususnya, seni bina jarang bersatu direka bentuk untuk kesedaran tugas termasuk pengesanan, penjejakan dan pemetaan dalam talian. Di samping itu, berat

Pada bulan lalu, atas sebab-sebab yang diketahui umum, saya telah mengadakan pertukaran yang sangat intensif dengan pelbagai guru dan rakan sekelas dalam industri. Topik yang tidak dapat dielakkan dalam pertukaran secara semula jadi adalah hujung ke hujung dan Tesla FSDV12 yang popular. Saya ingin mengambil kesempatan ini untuk menyelesaikan beberapa buah fikiran dan pendapat saya pada masa ini untuk rujukan dan perbincangan anda. Bagaimana untuk mentakrifkan sistem pemanduan autonomi hujung ke hujung, dan apakah masalah yang sepatutnya dijangka diselesaikan hujung ke hujung? Menurut definisi yang paling tradisional, sistem hujung ke hujung merujuk kepada sistem yang memasukkan maklumat mentah daripada penderia dan secara langsung mengeluarkan pembolehubah yang membimbangkan tugas. Sebagai contoh, dalam pengecaman imej, CNN boleh dipanggil hujung-ke-hujung berbanding kaedah pengekstrak ciri + pengelas tradisional. Dalam tugas pemanduan autonomi, masukkan data daripada pelbagai penderia (kamera/LiDAR
