


Kaedah untuk anggaran bingkai dalaman menggunakan model perhatian kendiri visual panoramik
1. Latar belakang penyelidikan
Kaedah ini tertumpu terutamanya pada anggaran dalaman ) tugasan, tugasan memasukkan gambar 2D dan mengeluarkan model tiga dimensi pemandangan yang diterangkan oleh gambar. Memandangkan kerumitan pengeluaran model 3D secara langsung, tugas ini secara amnya dipecahkan kepada mengeluarkan maklumat tiga baris: garisan dinding, garisan siling dan garisan tanah dalam imej 2D, dan kemudian membina semula model 3D bilik melalui pasca- operasi pemprosesan berdasarkan maklumat talian . Model tiga dimensi boleh digunakan selanjutnya dalam senario aplikasi tertentu seperti pembiakan pemandangan dalaman dan tontonan rumah VR di peringkat kemudian. Berbeza dengan kaedah anggaran kedalaman, kaedah ini memulihkan struktur geometri spatial berdasarkan anggaran garisan dinding dalam bangunan barangan seperti sofa dan kerusi dalam adegan dalaman.
Mengikut imej input, ia boleh dibahagikan kepada kaedah berasaskan perspektif dan berasaskan panorama. Berbanding dengan pandangan perspektif, panorama mempunyai sudut tontonan yang lebih besar dan maklumat imej yang lebih kaya. Dengan mempopularkan peralatan pemerolehan panorama, data panoramik semakin banyak, jadi pada masa ini terdapat banyak algoritma untuk anggaran bingkai dalaman berdasarkan imej panorama yang telah dikaji secara meluas
#🎜 🎜##🎜 🎜#
#🎜
Rangka kerja struktur rangkaian mengandungi 4 modul iaitu Backbone, vision transformer decoder, frame prediction module, dan boundary enhancement modul. Modul Backbone memetakan panorama ke ruang ciri, pengekod pengubah vison mempelajari korelasi global dalam ruang ciri, dan modul ramalan bingkai menukarkan ciri kepada garisan dinding, garisan siling dan maklumat pasca pemprosesan boleh diperoleh lagi model tiga dimensi bilik dan sempadannya Modul peningkatan menyerlahkan peranan maklumat sempadan dalam imej panorama untuk anggaran bingkai dalaman.
① Modul tulang belakang
Disebabkan oleh kesan pengubah yang lemah kepada ekstrak ciri panorama , telah ditunjukkan bahawa keberkesanan kaedah berasaskan CNN ialah ciri CNN boleh digunakan untuk meramalkan bingkai rumah. Oleh itu, kami menggunakan tulang belakang CNN untuk mengekstrak peta ciri skala panorama yang berbeza dan mempelajari maklumat global imej panorama dalam peta ciri. Keputusan eksperimen menunjukkan bahawa kesan menggunakan pengubah dalam ruang ciri adalah jauh lebih baik daripada menerapkannya secara langsung pada panorama② Modul pengekod pengubah penglihatan
Seni bina utama Transformer boleh dibahagikan kepada tiga modul, termasuk pensampelan tampalan, pembenaman tampalan dan perhatian berbilang kepala pengubah. Input mempertimbangkan kedua-dua peta ciri imej panorama dan imej asal serta menggunakan kaedah pensampelan tampalan yang berbeza untuk input yang berbeza. Imej asal menggunakan kaedah pensampelan seragam, dan peta ciri menggunakan kaedah pensampelan mendatar. Kesimpulan daripada HorizonNet percaya bahawa ciri mendatar adalah lebih penting dalam tugasan anggaran garisan dinding Merujuk kepada kesimpulan ini, ciri peta ciri dimampatkan dalam arah menegak semasa proses pembenaman. Kaedah PE Berulang digunakan untuk menggabungkan ciri-ciri skala yang berbeza dan belajar dalam model transformer perhatian berbilang kepala untuk mendapatkan vektor ciri dengan panjang yang sama dengan arah mendatar imej asal Taburan garis dinding yang sepadan boleh diperolehi melalui kepala penyahkod yang berbeza.
Pengekodan kedudukan kitaran rawak (Pembenaman Kedudukan Berulang) mengambil kira bahawa anjakan mendatar panorama tidak mengubah ciri-ciri maklumat visual imej, jadi kedudukan awal dipilih secara rawak di sepanjang paksi mendatar semasa setiap latihan, membuat proses latihan Beri perhatian lebih kepada kedudukan relatif antara patch yang berbeza dan bukannya kedudukan mutlak.
③ Maklumat geometri panorama
Penggunaan penuh maklumat geometri dalam panorama boleh membantu meningkatkan prestasi tugasan anggaran bingkai dalaman. Modul peningkatan sempadan dalam model PanoViT menekankan cara menggunakan maklumat sempadan dalam panorama, dan Kehilangan 3D membantu mengurangkan kesan herotan panorama.
Modul peningkatan sempadan mengambil kira ciri linear garisan dinding dalam tugas pengesanan garisan dinding Maklumat garisan dalam imej adalah penting, jadi adalah perlu untuk menyerlahkan maklumat sempadan supaya rangkaian boleh. memahami taburan garisan dalam imej. Gunakan kaedah peningkatan sempadan dalam domain frekuensi untuk menyerlahkan maklumat sempadan panorama, dapatkan perwakilan domain frekuensi imej berdasarkan transformasi Fourier pantas, gunakan topeng untuk mengambil sampel dalam ruang domain frekuensi dan ubah kembali kepada imej dengan sempadan yang diserlahkan maklumat berdasarkan penjelmaan Fourier songsang . Inti modul terletak pada reka bentuk topeng Memandangkan sempadan sepadan dengan maklumat frekuensi tinggi, topeng mula-mula memilih penapis laluan tinggi dan sampel arah domain frekuensi yang berbeza mengikut arah yang berbeza bagi garisan yang berbeza. Kaedah ini lebih mudah untuk dilaksanakan dan lebih cekap daripada kaedah LSD tradisional.
Kerja terdahulu mengira jarak piksel pada panorama sebagai ralat anggaran Disebabkan herotan panorama, jarak piksel pada gambar tidak berkadar dengan jarak sebenar dalam dunia 3D. PanoViT menggunakan fungsi kehilangan 3D untuk mengira ralat anggaran secara langsung dalam ruang 3D.
2. Hasil model
Menggunakan set data awam Martroport3D dan PanoContext untuk menjalankan eksperimen, menggunakan 2DIoU dan 3DIoU sebagai penunjuk penilaian dan membandingkan dengan kaedah SOTA. Keputusan menunjukkan bahawa penunjuk penilaian model PanoViT pada dua set data pada dasarnya telah mencapai tahap optimum, dan hanya lebih rendah sedikit daripada LED2 pada penunjuk tertentu. Dengan membandingkan hasil visualisasi model dengan Hohonet, boleh didapati bahawa PanoViT boleh mengenal pasti dengan tepat arah garisan dinding dalam adegan yang kompleks. Dengan membandingkan modul PE Berulang, peningkatan sempadan dan Kehilangan 3D dalam eksperimen ablasi, keberkesanan modul ini boleh disahkan
Untuk mencapai lebih daripada 01 set data dalaman00, model yang lebih baik. panorama dikumpulkan Set data imej panorama yang dibina sendiri mengandungi pelbagai pemandangan dalaman yang kompleks dan diberi anotasi berdasarkan peraturan tersuai 5053 imej telah dipilih sebagai set data ujian. Prestasi model PanoViT dan kaedah model SOTA telah diuji pada set data binaan sendiri, dan didapati bahawa apabila jumlah data meningkat, prestasi model PanoViT meningkat dengan ketara.
3. Cara menggunakan
- dalam ModelScope Buka laman web rasmi modelscope: https://modelscope.cn/home.
- Cari "anggaran bingkai dalaman panorama".
- Klik Guna Pantas-Gunakan Persekitaran Dalam Talian-Pengalaman Pantas untuk membuka buku nota.
- Masukkan kod contoh halaman utama, muat naik imej panorama 1024*512, ubah suai laluan pemuatan imej dan jalankan untuk mengeluarkan hasil ramalan garis dinding.
Atas ialah kandungan terperinci Kaedah untuk anggaran bingkai dalaman menggunakan model perhatian kendiri visual panoramik. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas

Ditulis di atas & pemahaman peribadi penulis: Pada masa ini, dalam keseluruhan sistem pemanduan autonomi, modul persepsi memainkan peranan penting Hanya selepas kenderaan pemanduan autonomi yang memandu di jalan raya memperoleh keputusan persepsi yang tepat melalui modul persepsi boleh Peraturan hiliran dan. modul kawalan dalam sistem pemanduan autonomi membuat pertimbangan dan keputusan tingkah laku yang tepat pada masanya dan betul. Pada masa ini, kereta dengan fungsi pemanduan autonomi biasanya dilengkapi dengan pelbagai penderia maklumat data termasuk penderia kamera pandangan sekeliling, penderia lidar dan penderia radar gelombang milimeter untuk mengumpul maklumat dalam modaliti yang berbeza untuk mencapai tugas persepsi yang tepat. Algoritma persepsi BEV berdasarkan penglihatan tulen digemari oleh industri kerana kos perkakasannya yang rendah dan penggunaan mudah, dan hasil keluarannya boleh digunakan dengan mudah untuk pelbagai tugas hiliran.

Cabaran biasa yang dihadapi oleh algoritma pembelajaran mesin dalam C++ termasuk pengurusan memori, multi-threading, pengoptimuman prestasi dan kebolehselenggaraan. Penyelesaian termasuk menggunakan penunjuk pintar, perpustakaan benang moden, arahan SIMD dan perpustakaan pihak ketiga, serta mengikuti garis panduan gaya pengekodan dan menggunakan alat automasi. Kes praktikal menunjukkan cara menggunakan perpustakaan Eigen untuk melaksanakan algoritma regresi linear, mengurus memori dengan berkesan dan menggunakan operasi matriks berprestasi tinggi.

Lapisan bawah fungsi C++ sort menggunakan isihan gabungan, kerumitannya ialah O(nlogn), dan menyediakan pilihan algoritma pengisihan yang berbeza, termasuk isihan pantas, isihan timbunan dan isihan stabil.

1. Perkembangan sejarah model besar pelbagai mod Gambar di atas adalah bengkel kecerdasan buatan pertama yang diadakan di Kolej Dartmouth di Amerika Syarikat pada tahun 1956. Persidangan ini juga dianggap telah memulakan pembangunan kecerdasan buatan perintis logik simbolik (kecuali ahli neurobiologi Peter Milner di tengah-tengah barisan hadapan). Walau bagaimanapun, teori logik simbolik ini tidak dapat direalisasikan untuk masa yang lama, malah memulakan musim sejuk AI pertama pada 1980-an dan 1990-an. Sehingga pelaksanaan model bahasa besar baru-baru ini, kami mendapati bahawa rangkaian saraf benar-benar membawa pemikiran logik ini. Kerja ahli neurobiologi Peter Milner memberi inspirasi kepada pembangunan rangkaian saraf tiruan yang seterusnya, dan atas sebab inilah dia dijemput untuk mengambil bahagian. dalam projek ini.

01Garis prospek Pada masa ini, sukar untuk mencapai keseimbangan yang sesuai antara kecekapan pengesanan dan hasil pengesanan. Kami telah membangunkan algoritma YOLOv5 yang dipertingkatkan untuk pengesanan sasaran dalam imej penderiaan jauh optik resolusi tinggi, menggunakan piramid ciri berbilang lapisan, strategi kepala pengesanan berbilang dan modul perhatian hibrid untuk meningkatkan kesan rangkaian pengesanan sasaran dalam imej penderiaan jauh optik. Menurut set data SIMD, peta algoritma baharu adalah 2.2% lebih baik daripada YOLOv5 dan 8.48% lebih baik daripada YOLOX, mencapai keseimbangan yang lebih baik antara hasil pengesanan dan kelajuan. 02 Latar Belakang & Motivasi Dengan perkembangan pesat teknologi penderiaan jauh, imej penderiaan jauh optik resolusi tinggi telah digunakan untuk menggambarkan banyak objek di permukaan bumi, termasuk pesawat, kereta, bangunan, dll. Pengesanan objek dalam tafsiran imej penderiaan jauh

Konvergensi kecerdasan buatan (AI) dan penguatkuasaan undang-undang membuka kemungkinan baharu untuk pencegahan dan pengesanan jenayah. Keupayaan ramalan kecerdasan buatan digunakan secara meluas dalam sistem seperti CrimeGPT (Teknologi Ramalan Jenayah) untuk meramal aktiviti jenayah. Artikel ini meneroka potensi kecerdasan buatan dalam ramalan jenayah, aplikasi semasanya, cabaran yang dihadapinya dan kemungkinan implikasi etika teknologi tersebut. Kecerdasan Buatan dan Ramalan Jenayah: Asas CrimeGPT menggunakan algoritma pembelajaran mesin untuk menganalisis set data yang besar, mengenal pasti corak yang boleh meramalkan di mana dan bila jenayah mungkin berlaku. Set data ini termasuk statistik jenayah sejarah, maklumat demografi, penunjuk ekonomi, corak cuaca dan banyak lagi. Dengan mengenal pasti trend yang mungkin terlepas oleh penganalisis manusia, kecerdasan buatan boleh memperkasakan agensi penguatkuasaan undang-undang

1. Latar Belakang Pembinaan 58 Portrait Platform Pertama sekali, saya ingin berkongsi dengan anda latar belakang pembinaan 58 Portrait Platform. 1. Pemikiran tradisional platform pemprofilan tradisional tidak lagi mencukupi Membina platform pemprofilan pengguna bergantung pada keupayaan pemodelan gudang data untuk menyepadukan data daripada pelbagai barisan perniagaan untuk membina potret pengguna yang tepat untuk memahami tingkah laku, minat pengguna dan keperluan, dan menyediakan keupayaan sampingan, akhirnya, ia juga perlu mempunyai keupayaan platform data untuk menyimpan, bertanya dan berkongsi data profil pengguna dan menyediakan perkhidmatan profil dengan cekap. Perbezaan utama antara platform pemprofilan perniagaan binaan sendiri dan platform pemprofilan pejabat pertengahan ialah platform pemprofilan binaan sendiri menyediakan satu barisan perniagaan dan boleh disesuaikan atas permintaan platform pertengahan pejabat berkhidmat berbilang barisan perniagaan, mempunyai kompleks pemodelan, dan menyediakan lebih banyak keupayaan umum. 2.58 Potret pengguna latar belakang pembinaan potret di platform tengah 58

Analisis algoritma PHP: Kaedah yang cekap untuk mencari nombor yang hilang dalam tatasusunan Dalam proses membangunkan aplikasi PHP, kita sering menghadapi situasi di mana kita perlu mencari nombor yang hilang dalam tatasusunan. Keadaan ini sangat biasa dalam pemprosesan data dan reka bentuk algoritma, jadi kita perlu menguasai algoritma carian yang cekap untuk menyelesaikan masalah ini. Artikel ini akan memperkenalkan kaedah yang cekap untuk mencari nombor yang hilang dalam tatasusunan, dan melampirkan contoh kod PHP tertentu. Penerangan Masalah Katakan kita mempunyai tatasusunan yang mengandungi integer antara 1 dan 100, tetapi satu nombor tiada. Kita perlu mereka bentuk a
