Rumah Peranti teknologi AI Masalah penyaringan ciri dalam algoritma pembelajaran mesin

Masalah penyaringan ciri dalam algoritma pembelajaran mesin

Oct 08, 2023 am 11:24 AM
pembelajaran mesin algoritma Pemilihan ciri

Masalah penyaringan ciri dalam algoritma pembelajaran mesin

Masalah saringan ciri dalam algoritma pembelajaran mesin

Dalam bidang pembelajaran mesin, saringan ciri ialah masalah yang sangat penting adalah untuk memilih ciri yang paling berguna untuk tugasan ramalan daripada sejumlah besar ciri. Penapisan ciri boleh mengurangkan dimensi, mengurangkan kerumitan pengiraan dan meningkatkan ketepatan dan kebolehtafsiran model.

Terdapat banyak kaedah saringan ciri Di bawah kami akan memperkenalkan tiga kaedah saringan ciri yang biasa digunakan dan memberikan contoh kod yang sepadan.

  1. Variance Threshold

Variance Threshold ialah kaedah pemilihan ciri yang mudah dan intuitif yang menilai kepentingan ciri kepada pembolehubah sasaran dengan mengira varians ciri. Lebih kecil varians, lebih kecil kesan ciri pada pembolehubah sasaran dan boleh dipertimbangkan untuk dialih keluar.

from sklearn.feature_selection import VarianceThreshold

# 创建特征矩阵
X = [[0, 2, 0, 3],
     [0, 1, 4, 3],
     [0, 1, 1, 3],
     [1, 2, 3, 5]]

# 创建方差筛选器
selector = VarianceThreshold(threshold=0.8)

# 应用筛选器
X_new = selector.fit_transform(X)

print(X_new)
Salin selepas log masuk

Dalam contoh kod di atas, kami mula-mula mencipta matriks ciri 4x4 X, dan kemudian mencipta penapis varians Dengan menetapkan parameter ambang kepada 0.8, kami hanya mengekalkan ciri dengan varians lebih daripada 0.8. Akhir sekali, kami menggunakan penapis dan mencetak matriks ciri yang ditapis X_new.

  1. Pemilihan Ciri berasaskan korelasi

Kaedah saringan pekali korelasi ialah kaedah pemilihan ciri berdasarkan korelasi antara ciri dan pembolehubah sasaran. Ia menggunakan pekali korelasi Pearson untuk mengukur korelasi linear antara ciri dan pembolehubah sasaran. Semakin besar nilai mutlak pekali korelasi, semakin kuat korelasi antara ciri dan pembolehubah sasaran, dan ia boleh dipertimbangkan untuk pengekalan.

import pandas as pd
from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import f_regression

# 创建特征矩阵和目标变量
X = pd.DataFrame([[1, -1, 2],
                  [2, 0, 0],
                  [0, 1, -1],
                  [0, 2, 3]])
y = pd.Series([1, 2, 3, 4])

# 创建相关系数筛选器
selector = SelectKBest(score_func=f_regression, k=2)

# 应用筛选器
X_new = selector.fit_transform(X, y)

print(X_new)
Salin selepas log masuk

Dalam contoh kod di atas, kami mula-mula mencipta matriks ciri 3x3 X dan pembolehubah sasaran y yang mengandungi 4 nilai. Kemudian penapis pekali korelasi dibuat Dengan menetapkan parameter score_func kepada f_regression, ia bermakna menggunakan fungsi f_regression untuk mengira pekali korelasi antara ciri dan pembolehubah sasaran. Akhir sekali, kami menggunakan penapis dan mencetak matriks ciri yang ditapis X_new.

  1. Pemilihan Ciri berasaskan model

Kaedah saringan berasaskan model menilai kepentingan ciri dengan melatih model pembelajaran diselia dan memilih ciri yang paling membantu pembolehubah sasaran. Model yang biasa digunakan termasuk pepohon keputusan, hutan rawak dan mesin vektor sokongan.

from sklearn.ensemble import RandomForestClassifier
from sklearn.feature_selection import SelectFromModel

# 创建特征矩阵和目标变量
X = [[0.87, -0.15, 0.67, 1.52],
    [0.50, -0.12, -0.23, 0.31],
    [0.14, 1.03, -2.08, -0.06],
    [-0.68, -0.64, 1.62, -0.36]]
y = [0, 1, 0, 1]

# 创建随机森林分类器
clf = RandomForestClassifier()

# 创建基于模型的筛选器
selector = SelectFromModel(clf)

# 应用筛选器
X_new = selector.fit_transform(X, y)

print(X_new)
Salin selepas log masuk

Dalam contoh kod di atas, kami mula-mula mencipta matriks ciri 4x4 X dan pembolehubah sasaran y yang mengandungi 4 label pengelasan. Kemudian pengelas hutan rawak dicipta dan penapis berasaskan model dicipta. Akhir sekali, kami menggunakan penapis dan mencetak matriks ciri yang ditapis X_new.

Penyaringan ciri ialah isu penting dalam algoritma pembelajaran mesin Dengan memilih dan menapis ciri secara rasional, ketepatan dan kebolehtafsiran model boleh dipertingkatkan. Contoh kod di atas memberikan contoh kod untuk tiga kaedah saringan ciri yang biasa digunakan: kaedah saringan varians, kaedah saringan pekali korelasi dan kaedah saringan berasaskan model Kami berharap dapat memberikan rujukan kepada pembaca untuk memahami dan menggunakan saringan ciri.

Atas ialah kandungan terperinci Masalah penyaringan ciri dalam algoritma pembelajaran mesin. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

Video Face Swap

Video Face Swap

Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Alat panas

Notepad++7.3.1

Notepad++7.3.1

Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina

SublimeText3 versi Cina

Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1

Hantar Studio 13.0.1

Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6

Dreamweaver CS6

Alat pembangunan web visual

SublimeText3 versi Mac

SublimeText3 versi Mac

Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Artikel ini akan membawa anda memahami SHAP: penjelasan model untuk pembelajaran mesin Artikel ini akan membawa anda memahami SHAP: penjelasan model untuk pembelajaran mesin Jun 01, 2024 am 10:58 AM

Dalam bidang pembelajaran mesin dan sains data, kebolehtafsiran model sentiasa menjadi tumpuan penyelidik dan pengamal. Dengan aplikasi meluas model yang kompleks seperti kaedah pembelajaran mendalam dan ensemble, memahami proses membuat keputusan model menjadi sangat penting. AI|XAI yang boleh dijelaskan membantu membina kepercayaan dan keyakinan dalam model pembelajaran mesin dengan meningkatkan ketelusan model. Meningkatkan ketelusan model boleh dicapai melalui kaedah seperti penggunaan meluas pelbagai model yang kompleks, serta proses membuat keputusan yang digunakan untuk menerangkan model. Kaedah ini termasuk analisis kepentingan ciri, anggaran selang ramalan model, algoritma kebolehtafsiran tempatan, dsb. Analisis kepentingan ciri boleh menerangkan proses membuat keputusan model dengan menilai tahap pengaruh model ke atas ciri input. Anggaran selang ramalan model

Melaksanakan Algoritma Pembelajaran Mesin dalam C++: Cabaran dan Penyelesaian Biasa Melaksanakan Algoritma Pembelajaran Mesin dalam C++: Cabaran dan Penyelesaian Biasa Jun 03, 2024 pm 01:25 PM

Cabaran biasa yang dihadapi oleh algoritma pembelajaran mesin dalam C++ termasuk pengurusan memori, multi-threading, pengoptimuman prestasi dan kebolehselenggaraan. Penyelesaian termasuk menggunakan penunjuk pintar, perpustakaan benang moden, arahan SIMD dan perpustakaan pihak ketiga, serta mengikuti garis panduan gaya pengekodan dan menggunakan alat automasi. Kes praktikal menunjukkan cara menggunakan perpustakaan Eigen untuk melaksanakan algoritma regresi linear, mengurus memori dengan berkesan dan menggunakan operasi matriks berprestasi tinggi.

Lima sekolah pembelajaran mesin yang anda tidak tahu Lima sekolah pembelajaran mesin yang anda tidak tahu Jun 05, 2024 pm 08:51 PM

Pembelajaran mesin ialah cabang penting kecerdasan buatan yang memberikan komputer keupayaan untuk belajar daripada data dan meningkatkan keupayaan mereka tanpa diprogramkan secara eksplisit. Pembelajaran mesin mempunyai pelbagai aplikasi dalam pelbagai bidang, daripada pengecaman imej dan pemprosesan bahasa semula jadi kepada sistem pengesyoran dan pengesanan penipuan, dan ia mengubah cara hidup kita. Terdapat banyak kaedah dan teori yang berbeza dalam bidang pembelajaran mesin, antaranya lima kaedah yang paling berpengaruh dipanggil "Lima Sekolah Pembelajaran Mesin". Lima sekolah utama ialah sekolah simbolik, sekolah sambungan, sekolah evolusi, sekolah Bayesian dan sekolah analogi. 1. Simbolisme, juga dikenali sebagai simbolisme, menekankan penggunaan simbol untuk penaakulan logik dan ekspresi pengetahuan. Aliran pemikiran ini percaya bahawa pembelajaran adalah proses penolakan terbalik, melalui sedia ada

AI yang boleh dijelaskan: Menerangkan model AI/ML yang kompleks AI yang boleh dijelaskan: Menerangkan model AI/ML yang kompleks Jun 03, 2024 pm 10:08 PM

Penterjemah |. Disemak oleh Li Rui |. Chonglou Model kecerdasan buatan (AI) dan pembelajaran mesin (ML) semakin kompleks hari ini, dan output yang dihasilkan oleh model ini adalah kotak hitam – tidak dapat dijelaskan kepada pihak berkepentingan. AI Boleh Dijelaskan (XAI) bertujuan untuk menyelesaikan masalah ini dengan membolehkan pihak berkepentingan memahami cara model ini berfungsi, memastikan mereka memahami cara model ini sebenarnya membuat keputusan, dan memastikan ketelusan dalam sistem AI, Amanah dan akauntabiliti untuk menyelesaikan masalah ini. Artikel ini meneroka pelbagai teknik kecerdasan buatan (XAI) yang boleh dijelaskan untuk menggambarkan prinsip asasnya. Beberapa sebab mengapa AI boleh dijelaskan adalah penting Kepercayaan dan ketelusan: Untuk sistem AI diterima secara meluas dan dipercayai, pengguna perlu memahami cara keputusan dibuat

Adakah Flash Attention stabil? Meta dan Harvard mendapati bahawa sisihan berat model mereka berubah-ubah mengikut urutan magnitud Adakah Flash Attention stabil? Meta dan Harvard mendapati bahawa sisihan berat model mereka berubah-ubah mengikut urutan magnitud May 30, 2024 pm 01:24 PM

MetaFAIR bekerjasama dengan Harvard untuk menyediakan rangka kerja penyelidikan baharu untuk mengoptimumkan bias data yang dijana apabila pembelajaran mesin berskala besar dilakukan. Adalah diketahui bahawa latihan model bahasa besar sering mengambil masa berbulan-bulan dan menggunakan ratusan atau bahkan ribuan GPU. Mengambil model LLaMA270B sebagai contoh, latihannya memerlukan sejumlah 1,720,320 jam GPU. Melatih model besar memberikan cabaran sistemik yang unik disebabkan oleh skala dan kerumitan beban kerja ini. Baru-baru ini, banyak institusi telah melaporkan ketidakstabilan dalam proses latihan apabila melatih model AI generatif SOTA Mereka biasanya muncul dalam bentuk lonjakan kerugian Contohnya, model PaLM Google mengalami sehingga 20 lonjakan kerugian semasa proses latihan. Bias berangka adalah punca ketidaktepatan latihan ini,

Algoritma pengesanan yang dipertingkatkan: untuk pengesanan sasaran dalam imej penderiaan jauh optik resolusi tinggi Algoritma pengesanan yang dipertingkatkan: untuk pengesanan sasaran dalam imej penderiaan jauh optik resolusi tinggi Jun 06, 2024 pm 12:33 PM

01Garis prospek Pada masa ini, sukar untuk mencapai keseimbangan yang sesuai antara kecekapan pengesanan dan hasil pengesanan. Kami telah membangunkan algoritma YOLOv5 yang dipertingkatkan untuk pengesanan sasaran dalam imej penderiaan jauh optik resolusi tinggi, menggunakan piramid ciri berbilang lapisan, strategi kepala pengesanan berbilang dan modul perhatian hibrid untuk meningkatkan kesan rangkaian pengesanan sasaran dalam imej penderiaan jauh optik. Menurut set data SIMD, peta algoritma baharu adalah 2.2% lebih baik daripada YOLOv5 dan 8.48% lebih baik daripada YOLOX, mencapai keseimbangan yang lebih baik antara hasil pengesanan dan kelajuan. 02 Latar Belakang & Motivasi Dengan perkembangan pesat teknologi penderiaan jauh, imej penderiaan jauh optik resolusi tinggi telah digunakan untuk menggambarkan banyak objek di permukaan bumi, termasuk pesawat, kereta, bangunan, dll. Pengesanan objek dalam tafsiran imej penderiaan jauh

Pembelajaran Mesin dalam C++: Panduan untuk Melaksanakan Algoritma Pembelajaran Mesin Biasa dalam C++ Pembelajaran Mesin dalam C++: Panduan untuk Melaksanakan Algoritma Pembelajaran Mesin Biasa dalam C++ Jun 03, 2024 pm 07:33 PM

Dalam C++, pelaksanaan algoritma pembelajaran mesin termasuk: Regresi linear: digunakan untuk meramalkan pembolehubah berterusan Langkah-langkah termasuk memuatkan data, mengira berat dan berat sebelah, mengemas kini parameter dan ramalan. Regresi logistik: digunakan untuk meramalkan pembolehubah diskret Proses ini serupa dengan regresi linear, tetapi menggunakan fungsi sigmoid untuk ramalan. Mesin Vektor Sokongan: Algoritma klasifikasi dan regresi yang berkuasa yang melibatkan pengkomputeran vektor sokongan dan label ramalan.

Aplikasi algoritma dalam pembinaan 58 platform potret Aplikasi algoritma dalam pembinaan 58 platform potret May 09, 2024 am 09:01 AM

1. Latar Belakang Pembinaan 58 Portrait Platform Pertama sekali, saya ingin berkongsi dengan anda latar belakang pembinaan 58 Portrait Platform. 1. Pemikiran tradisional platform pemprofilan tradisional tidak lagi mencukupi Membina platform pemprofilan pengguna bergantung pada keupayaan pemodelan gudang data untuk menyepadukan data daripada pelbagai barisan perniagaan untuk membina potret pengguna yang tepat untuk memahami tingkah laku, minat pengguna dan keperluan, dan menyediakan keupayaan sampingan, akhirnya, ia juga perlu mempunyai keupayaan platform data untuk menyimpan, bertanya dan berkongsi data profil pengguna dan menyediakan perkhidmatan profil dengan cekap. Perbezaan utama antara platform pemprofilan perniagaan binaan sendiri dan platform pemprofilan pejabat pertengahan ialah platform pemprofilan binaan sendiri menyediakan satu barisan perniagaan dan boleh disesuaikan atas permintaan platform pertengahan pejabat berkhidmat berbilang barisan perniagaan, mempunyai kompleks pemodelan, dan menyediakan lebih banyak keupayaan umum. 2.58 Potret pengguna latar belakang pembinaan potret di platform tengah 58

See all articles