Rumah Peranti teknologi AI Masalah pengesanan sasaran dalam penglihatan komputer

Masalah pengesanan sasaran dalam penglihatan komputer

Oct 08, 2023 pm 12:04 PM
penglihatan komputer penyelesaian masalah pengesanan sasaran

Masalah pengesanan sasaran dalam penglihatan komputer

Masalah pengesan sasaran dalam penglihatan komputer memerlukan contoh kod khusus

Pengenalan:
Dengan perkembangan kecerdasan buatan, penglihatan komputer telah digunakan secara meluas dalam pelbagai bidang, antaranya masalah pengesanan sasaran merupakan salah satu masalah dalam komputer visi hala tuju penyelidikan yang penting. Penjejakan sasaran bertujuan untuk menggunakan algoritma komputer untuk menjejak sasaran secara berterusan, tepat dan masa nyata dalam video Ia digunakan secara meluas dalam pengawasan video, pemanduan tanpa pemandu, realiti maya dan bidang lain, membawa kemudahan yang hebat kepada aplikasi dalam pelbagai senario. Artikel ini akan memperkenalkan konsep asas dan algoritma biasa penjejakan sasaran, dan memberikan contoh kod khusus untuk membantu pembaca memahami dan menguasai masalah penjejakan sasaran dengan lebih baik.

1. Konsep asas penjejakan sasaran
Penjejakan sasaran merujuk kepada pengesanan kedudukan, bentuk, saiz dan maklumat lain objek sasaran dalam urutan video. Langkah asasnya termasuk pemulaan sasaran, pengesanan sasaran, pengekstrakan ciri sasaran dan ramalan lokasi sasaran. Antara langkah ini, pemulaan sasaran merujuk kepada memilih objek sasaran dalam bingkai tertentu dalam video, dan menentukur dan memulakan pengesanan sasaran merujuk kepada menggunakan algoritma khusus untuk mengesan kedudukan objek sasaran dalam setiap bingkai Pengekstrakan ciri sasaran; untuk mengekstrak maklumat penerangan ciri yang berkesan daripada imej objek sasaran ramalan kedudukan sasaran merujuk kepada meramalkan kedudukan sasaran dalam bingkai seterusnya melalui algoritma ramalan berdasarkan kedudukan sasaran dan maklumat ciri bingkai sebelumnya.

2. Algoritma biasa untuk penjejakan sasaran
Masalah penjejakan sasaran ialah masalah penglihatan komputer yang kompleks, dan penyelidik telah mencadangkan banyak algoritma untuk menyelesaikan masalah ini. Beberapa algoritma penjejakan sasaran biasa akan diperkenalkan di bawah.

  1. Algoritma penjejakan sasaran berdasarkan ciri warna
    Algoritma penjejakan sasaran berdasarkan ciri warna merujuk kepada menjejak objek sasaran melalui cara seperti histogram warna dan kadar perubahan ciri warna. Algoritma ini sesuai untuk situasi di mana maklumat warna objek sasaran agak jelas, tetapi kesannya agak lemah untuk adegan dengan perubahan pencahayaan yang besar. Contoh kod khusus adalah seperti berikut:
import cv2

def color_tracking(frame, target):
    hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
    mask = cv2.inRange(hsv, target.lower_bound, target.upper_bound)
    contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
    
    if len(contours) > 0:
        max_contour = max(contours, key=cv2.contourArea)
        x, y, w, h = cv2.boundingRect(max_contour)
        cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 0), 2)
        
    return frame

# 定义目标物体的颜色范围
class Target:
    def __init__(self, lower_bound, upper_bound):
        self.lower_bound = lower_bound
        self.upper_bound = upper_bound

# 初始化目标物体的颜色范围
target = Target((0, 100, 100), (10, 255, 255))

# 目标跟踪主程序
def main():
    cap = cv2.VideoCapture(0)
    while True:
        ret, frame = cap.read()
        if not ret:
            break
        frame = color_tracking(frame, target)
        cv2.imshow("Tracking", frame)
        if cv2.waitKey(1) & 0xFF == ord('q'):
            break

    cap.release()
    cv2.destroyAllWindows()

if __name__ == '__main__':
    main()
Salin selepas log masuk
  1. Algoritma penjejakan sasaran berdasarkan pembelajaran mendalam
    Algoritma penjejakan sasaran berdasarkan pembelajaran mendalam merujuk kepada menjejak objek sasaran dengan melatih model rangkaian saraf dalam. Algoritma ini mempunyai keupayaan pengekstrakan dan pengelasan ciri yang lebih kukuh untuk objek sasaran dan tidak terjejas oleh pencahayaan dan gangguan latar belakang. Contoh kod khusus adalah seperti berikut:
import torch
import torchvision
import torchvision.transforms as transforms
import torch.optim as optim
import torch.nn as nn

# 定义目标跟踪模型
class TrackingModel(nn.Module):
    def __init__(self):
        super(TrackingModel, self).__init__()
        self.conv1 = nn.Conv2d(3, 64, 3, padding=1)
        self.conv2 = nn.Conv2d(64, 128, 3, padding=1)
        self.fc1 = nn.Linear(128 * 8 * 8, 512)
        self.fc2 = nn.Linear(512, 2)

    def forward(self, x):
        x = F.relu(self.conv1(x))
        x = F.relu(self.conv2(x))
        x = x.view(-1, 128 * 8 * 8)
        x = F.relu(self.fc1(x))
        x = self.fc2(x)
        return x

# 初始化目标跟踪模型
model = TrackingModel()

# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9)

# 加载数据集
transform = transforms.Compose(
    [transforms.ToTensor(),
     transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])

trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
                                        download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=4,
                                          shuffle=True, num_workers=2)

# 训练目标跟踪模型
def train():
    for epoch in range(10):  # 迭代次数
        running_loss = 0.0
        for i, data in enumerate(trainloader, 0):
            inputs, labels = data
            optimizer.zero_grad()
            outputs = model(inputs)
            loss = criterion(outputs, labels)
            loss.backward()
            optimizer.step()

            running_loss += loss.item()
            if i % 2000 == 1999:    # 打印loss值
                print('[%d, %5d] loss: %.3f' %
                      (epoch + 1, i + 1, running_loss / 2000))
                running_loss = 0.0

    print('Finished Training')

if __name__ == '__main__':
    train()
Salin selepas log masuk

3. Kesimpulan
Artikel ini memperkenalkan konsep asas dan algoritma biasa penjejakan sasaran, dan memberikan contoh kod penjejakan sasaran berdasarkan ciri warna dan pembelajaran mendalam. Pembaca boleh memilih algoritma yang sesuai mengikut keperluan khusus mereka dan menjalankan latihan dan penerokaan selanjutnya berdasarkan kod sampel. Masalah pengesanan sasaran adalah hala tuju penyelidikan yang popular dalam visi komputer Saya berharap artikel ini dapat membantu pembaca lebih memahami dan mengaplikasikan teknologi pengesanan sasaran dan menyumbang kepada pembangunan bidang penglihatan komputer.

Atas ialah kandungan terperinci Masalah pengesanan sasaran dalam penglihatan komputer. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

AI Hentai Generator

AI Hentai Generator

Menjana ai hentai secara percuma.

Alat panas

Notepad++7.3.1

Notepad++7.3.1

Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina

SublimeText3 versi Cina

Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1

Hantar Studio 13.0.1

Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6

Dreamweaver CS6

Alat pembangunan web visual

SublimeText3 versi Mac

SublimeText3 versi Mac

Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Perbezaan antara algoritma pengesanan sasaran satu peringkat dan dwi peringkat Perbezaan antara algoritma pengesanan sasaran satu peringkat dan dwi peringkat Jan 23, 2024 pm 01:48 PM

Pengesanan objek adalah tugas penting dalam bidang penglihatan komputer, digunakan untuk mengenal pasti objek dalam imej atau video dan mencari lokasinya. Tugasan ini biasanya dibahagikan kepada dua kategori algoritma, satu peringkat dan dua peringkat, yang berbeza dari segi ketepatan dan keteguhan. Algoritma pengesanan sasaran satu peringkat Algoritma pengesanan sasaran satu peringkat menukarkan pengesanan sasaran kepada masalah klasifikasi Kelebihannya ialah ia pantas dan boleh menyelesaikan pengesanan hanya dalam satu langkah. Walau bagaimanapun, disebabkan terlalu memudahkan, ketepatan biasanya tidak sebaik algoritma pengesanan objek dua peringkat. Algoritma pengesanan sasaran satu peringkat biasa termasuk YOLO, SSD dan FasterR-CNN. Algoritma ini biasanya mengambil keseluruhan imej sebagai input dan menjalankan pengelas untuk mengenal pasti objek sasaran. Tidak seperti algoritma pengesanan sasaran dua peringkat tradisional, mereka tidak perlu menentukan kawasan terlebih dahulu, tetapi meramalkan secara langsung

Cara menggunakan teknologi AI untuk memulihkan foto lama (dengan contoh dan analisis kod) Cara menggunakan teknologi AI untuk memulihkan foto lama (dengan contoh dan analisis kod) Jan 24, 2024 pm 09:57 PM

Pemulihan foto lama ialah kaedah menggunakan teknologi kecerdasan buatan untuk membaiki, menambah baik dan menambah baik foto lama. Menggunakan penglihatan komputer dan algoritma pembelajaran mesin, teknologi ini secara automatik boleh mengenal pasti dan membaiki kerosakan dan kecacatan pada foto lama, menjadikannya kelihatan lebih jelas, lebih semula jadi dan lebih realistik. Prinsip teknikal pemulihan foto lama terutamanya merangkumi aspek-aspek berikut: 1. Penyahnosian dan penambahbaikan imej Apabila memulihkan foto lama, foto itu perlu dibunyikan dan dipertingkatkan terlebih dahulu. Algoritma dan penapis pemprosesan imej, seperti penapisan min, penapisan Gaussian, penapisan dua hala, dsb., boleh digunakan untuk menyelesaikan masalah bunyi dan bintik warna, dengan itu meningkatkan kualiti foto. 2. Pemulihan dan pembaikan imej Dalam foto lama, mungkin terdapat beberapa kecacatan dan kerosakan, seperti calar, retak, pudar, dsb. Masalah ini boleh diselesaikan dengan algoritma pemulihan dan pembaikan imej

Aplikasi teknologi AI dalam pembinaan semula resolusi super imej Aplikasi teknologi AI dalam pembinaan semula resolusi super imej Jan 23, 2024 am 08:06 AM

Pembinaan semula imej resolusi super ialah proses menjana imej resolusi tinggi daripada imej resolusi rendah menggunakan teknik pembelajaran mendalam seperti rangkaian neural convolutional (CNN) dan rangkaian adversarial generatif (GAN). Matlamat kaedah ini adalah untuk meningkatkan kualiti dan perincian imej dengan menukar imej resolusi rendah kepada imej resolusi tinggi. Teknologi ini mempunyai aplikasi yang luas dalam banyak bidang, seperti pengimejan perubatan, kamera pengawasan, imej satelit, dsb. Melalui pembinaan semula imej resolusi super, kami boleh mendapatkan imej yang lebih jelas dan terperinci, membantu menganalisis dan mengenal pasti sasaran dan ciri dalam imej dengan lebih tepat. Kaedah pembinaan semula Kaedah pembinaan semula imej resolusi super secara amnya boleh dibahagikan kepada dua kategori: kaedah berasaskan interpolasi dan kaedah berasaskan pembelajaran mendalam. 1) Kaedah berasaskan interpolasi Pembinaan semula imej resolusi super berdasarkan interpolasi

Algoritma Ciri Invarian Skala (SIFT). Algoritma Ciri Invarian Skala (SIFT). Jan 22, 2024 pm 05:09 PM

Algoritma Scale Invariant Feature Transform (SIFT) ialah algoritma pengekstrakan ciri yang digunakan dalam bidang pemprosesan imej dan penglihatan komputer. Algoritma ini telah dicadangkan pada tahun 1999 untuk meningkatkan pengecaman objek dan prestasi pemadanan dalam sistem penglihatan komputer. Algoritma SIFT adalah teguh dan tepat dan digunakan secara meluas dalam pengecaman imej, pembinaan semula tiga dimensi, pengesanan sasaran, penjejakan video dan medan lain. Ia mencapai invarian skala dengan mengesan titik utama dalam ruang skala berbilang dan mengekstrak deskriptor ciri tempatan di sekitar titik utama. Langkah-langkah utama algoritma SIFT termasuk pembinaan ruang skala, pengesanan titik utama, kedudukan titik utama, penetapan arah dan penjanaan deskriptor ciri. Melalui langkah-langkah ini, algoritma SIFT boleh mengekstrak ciri yang teguh dan unik, dengan itu mencapai pemprosesan imej yang cekap.

Pengenalan kepada kaedah anotasi imej dan senario aplikasi biasa Pengenalan kepada kaedah anotasi imej dan senario aplikasi biasa Jan 22, 2024 pm 07:57 PM

Dalam bidang pembelajaran mesin dan penglihatan komputer, anotasi imej ialah proses menggunakan anotasi manusia pada set data imej. Kaedah anotasi imej boleh dibahagikan terutamanya kepada dua kategori: anotasi manual dan anotasi automatik. Anotasi manual bermaksud anotasi manusia menganotasi imej melalui operasi manual. Kaedah ini memerlukan anotasi manusia untuk mempunyai pengetahuan dan pengalaman profesional serta dapat mengenal pasti dan menganotasi objek sasaran, adegan atau ciri dalam imej dengan tepat. Kelebihan anotasi manual ialah hasil anotasi boleh dipercayai dan tepat, tetapi kelemahannya ialah ia memakan masa dan kos yang tinggi. Anotasi automatik merujuk kepada kaedah menggunakan program komputer untuk menganotasi imej secara automatik. Kaedah ini menggunakan pembelajaran mesin dan teknologi penglihatan komputer untuk mencapai anotasi automatik oleh model latihan. Kelebihan pelabelan automatik adalah kelajuan pantas dan kos rendah, tetapi kelemahannya ialah keputusan pelabelan mungkin tidak tepat.

Tafsiran konsep pengesanan sasaran dalam penglihatan komputer Tafsiran konsep pengesanan sasaran dalam penglihatan komputer Jan 24, 2024 pm 03:18 PM

Penjejakan objek ialah tugas penting dalam penglihatan komputer dan digunakan secara meluas dalam pemantauan trafik, robotik, pengimejan perubatan, pengesanan kenderaan automatik dan bidang lain. Ia menggunakan kaedah pembelajaran mendalam untuk meramal atau menganggarkan kedudukan objek sasaran dalam setiap bingkai berturut-turut dalam video selepas menentukan kedudukan awal objek sasaran. Penjejakan objek mempunyai pelbagai aplikasi dalam kehidupan sebenar dan sangat penting dalam bidang penglihatan komputer. Penjejakan objek biasanya melibatkan proses pengesanan objek. Berikut ialah gambaran ringkas tentang langkah-langkah pengesanan objek: 1. Pengesanan objek, di mana algoritma mengelaskan dan mengesan objek dengan mencipta kotak sempadan di sekelilingnya. 2. Berikan pengenalan unik (ID) kepada setiap objek. 3. Jejaki pergerakan objek yang dikesan dalam bingkai sambil menyimpan maklumat yang berkaitan. Jenis Sasaran Penjejakan Sasaran

Mengapakah storan setempat tidak boleh menyimpan data dengan betul? Mengapakah storan setempat tidak boleh menyimpan data dengan betul? Jan 03, 2024 pm 01:41 PM

Mengapa localstorage tidak boleh menyimpan data saya seperti biasa? Dalam pembangunan web, kita selalunya perlu menyimpan data pengguna secara setempat supaya data boleh dimuatkan atau dipulihkan dengan cepat pada kali berikutnya pengguna melawat tapak web. Dalam penyemak imbas, kita boleh menggunakan localStorage untuk mencapai fungsi ini. Walau bagaimanapun, kadangkala kami mendapati bahawa data yang disimpan menggunakan localStorage tidak berfungsi dengan betul. Jadi mengapa ini berlaku? Dalam memahami mengapa localStorage

Contoh aplikasi praktikal gabungan ciri cetek dan ciri mendalam Contoh aplikasi praktikal gabungan ciri cetek dan ciri mendalam Jan 22, 2024 pm 05:00 PM

Pembelajaran mendalam telah mencapai kejayaan besar dalam bidang penglihatan komputer, dan salah satu kemajuan penting ialah penggunaan rangkaian neural convolutional dalam (CNN) untuk klasifikasi imej. Walau bagaimanapun, CNN dalam biasanya memerlukan sejumlah besar data berlabel dan sumber pengkomputeran. Untuk mengurangkan permintaan untuk sumber pengiraan dan data berlabel, penyelidik mula mengkaji cara menggabungkan ciri cetek dan ciri mendalam untuk meningkatkan prestasi klasifikasi imej. Kaedah gabungan ini boleh mengambil kesempatan daripada kecekapan pengiraan yang tinggi bagi ciri cetek dan keupayaan perwakilan yang kuat bagi ciri mendalam. Dengan menggabungkan kedua-duanya, kos pengiraan dan keperluan pelabelan data boleh dikurangkan sambil mengekalkan ketepatan klasifikasi yang tinggi. Kaedah ini amat penting untuk senario aplikasi di mana jumlah data adalah kecil atau sumber pengkomputeran adalah terhad. Dengan kajian mendalam tentang kaedah gabungan ciri cetek dan ciri mendalam, kita boleh lebih lanjut

See all articles