PHP中的模板技术_PHP

Jun 01, 2016 pm 12:34 PM
output kami teknologi templat

综述:

在多人开发大型PHP项目时,模板技术非常有用,它可以分开美工和程序员的工作,并且方便界面的修改和完善;不仅如此,利用模板技术,我们还可以简单有效地定制或者修改站点。现在我们将要以PHPLIB的模板为例子讲述如何在PHP中应用模板技术。

  如何使用PHPLIB模板?

设我们有一个模板, 名为UserTemp,路径为/home/user_dir/user_temp/,它的内容如下:

你订购的是:{Product}

大括号表示Product是一个模板变量。

然后我们编写如下的程序:

<?php
include "template.inc";
$user_product = "随身听";

$tmp = new Template("/home/user_dir/user_temp/"); // 创建一个名为 $t 的模板对象
$tmp->set_file("FileHandle","UserTemp.ihtml"); // 设置句柄FileHandle = 模板文件
$tmp->set_var("Product",$user_product); // 设置模板变量Product=$user_product
$tmp->parse("Output","FileHandle"); // 设置模板变量 Output = 分析后的文件
$tmp->p("Output"); // 输出 Output 的值(我们的分析后的数据)
?>

template.inc是PHPLIB中的一个文件,我们用include以便使用PHPLIB的模板功能。PHPLIB模板使用的是面向对象的设计,所以我们可以用$tmp = new Template("/home/user_dir/user_temp/")创建一个模板对象,其参数是一个路径("/home/user_dir/user_temp/"), 用来设置模板文件所在位置,默认路径是PHP脚本所在目录。

set_file()用来定义指向UserTemp.ihtml(PHPLIB模板的模板文件名的后缀为.ihtml )的句柄"FileHandle",set_var()用来设置模板变量Product为$user_product的值(即"随身听"),parse()方法会装入FileHandle(即UserTemp.ihtml)进行分析,将所有在模板中出现的"{Product}"替换成$user_product的值("随身听")。

  如何使用嵌套的模板?

在上面的例子中,parse()方法设置的"Output"是一个模板变量,利用这点,我们可以实现模板的嵌套。

比如,我们有另外一个模板(假设为UserTemp2),其内容是:

欢迎你,亲爱的朋友!{Output}

那么在分析之后,其输出会是:

欢迎你,亲爱的朋友!你订购的是:随身听

下面是更新后的程序:

<?php
include "template.inc";
$user_product = "随身听";
$tmp = new Template("/home/user_dir/user_temp/");
$tmp->set_file("FileHandle","UserTemp.ihtml");
$tmp->set_var("Product",$user_product);
$tmp->parse("Output","FileHandle");

$tmp->set_file("FileHandle2","UserTemp2.ihtml");//设置第二个模板句柄
$tmp->parse("Output","FileHandle2");//分析第二个模板
$tmp->p("Output");
?>


很简单,我们就不详细解释了。这里有一个技巧:parse()和p()可以写成一个函数pparse(),比如$tmp->pparse(Output","FileHandle2)。

  PHPLIB模板如何接受多组值?

setfile()和set_var()的参数可以是关联数组(句柄作为数组索引,模板文件作为值),这样模板就可以接受多个值,比如:

<?php
……
$tmp->setfile(array("FileHandle"=>"UserTemp.ihtml","FileHandle2"=>"UserTemp2.ihtml"));
$tmp->set_var(array("Product"=>"随身听","Product2"=>"电视机"));
……
?>

  如何给模板变量追加数据?

我们可以给parse()和pparse()提供第三个参数(布尔变量)来给模板变量追加数据:

<?php
……
$tmp->pparse("Output","FileHandle",true);
……
?>

这样,FileHandle被分析后就会被追加到Output变量的值的后面而不是简单的替换。

  为什么要使用block机制?

  比方说我们想要显示:

你订购的是:随身听 电视机,……

用上面的方法直接追加的话,可能显示出来的是:

你订购的是:随身听 你订购的是:电视机 你订购的是:……

显然不符合我们的要求,那么如何有效解决这个问题呢?这里就要使用block机制。

我们将上面的模板文件UserTemp.ihtml修改一下:

你订购的是:

<!-- BEGIN Product_List -->
{Product}
<!-- END Product_List -->

  这样我们就定义了一个名为"Product_List"的block。

  相应的程序为:

<?php
include "template.inc";
$tmp=new Template("/home/user_dir/user_temp/");
$tmp->set_file("FileHandle","UserTemp.ihtml");
$tmp->set_block("FileHandle","Product_List","Product_Lists");
//将文件中的block替换成{Product_Lists}

$tmp->set_var("Product","随身听");
$tmp->parse("Product_Lists","Product_List",true);
$tmp->set_var("Product","电视机");
$tmp->parse("Product_Lists","Product_List",true);
//具体使用中,可以用数组和循环来做

$tmp->parse("Output","FileHandle");
$tmp->p("Output");
?>

  现在的输出就是我们想要的结果了。
Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

AI Hentai Generator

AI Hentai Generator

Menjana ai hentai secara percuma.

Artikel Panas

R.E.P.O. Kristal tenaga dijelaskan dan apa yang mereka lakukan (kristal kuning)
3 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Tetapan grafik terbaik
3 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Cara Memperbaiki Audio Jika anda tidak dapat mendengar sesiapa
3 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌

Alat panas

Notepad++7.3.1

Notepad++7.3.1

Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina

SublimeText3 versi Cina

Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1

Hantar Studio 13.0.1

Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6

Dreamweaver CS6

Alat pembangunan web visual

SublimeText3 versi Mac

SublimeText3 versi Mac

Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Kertas Stable Diffusion 3 akhirnya telah dikeluarkan, dan butiran seni bina didedahkan Adakah ia akan membantu untuk menghasilkan semula Sora? Kertas Stable Diffusion 3 akhirnya telah dikeluarkan, dan butiran seni bina didedahkan Adakah ia akan membantu untuk menghasilkan semula Sora? Mar 06, 2024 pm 05:34 PM

Kertas StableDiffusion3 akhirnya di sini! Model ini dikeluarkan dua minggu lalu dan menggunakan seni bina DiT (DiffusionTransformer) yang sama seperti Sora. Ia menimbulkan kekecohan apabila ia dikeluarkan. Berbanding dengan versi sebelumnya, kualiti imej yang dijana oleh StableDiffusion3 telah dipertingkatkan dengan ketara Ia kini menyokong gesaan berbilang tema, dan kesan penulisan teks juga telah dipertingkatkan, dan aksara bercelaru tidak lagi muncul. StabilityAI menegaskan bahawa StableDiffusion3 ialah satu siri model dengan saiz parameter antara 800M hingga 8B. Julat parameter ini bermakna model boleh dijalankan terus pada banyak peranti mudah alih, dengan ketara mengurangkan penggunaan AI

Artikel ini sudah cukup untuk anda membaca tentang pemanduan autonomi dan ramalan trajektori! Artikel ini sudah cukup untuk anda membaca tentang pemanduan autonomi dan ramalan trajektori! Feb 28, 2024 pm 07:20 PM

Ramalan trajektori memainkan peranan penting dalam pemanduan autonomi Ramalan trajektori pemanduan autonomi merujuk kepada meramalkan trajektori pemanduan masa hadapan kenderaan dengan menganalisis pelbagai data semasa proses pemanduan kenderaan. Sebagai modul teras pemanduan autonomi, kualiti ramalan trajektori adalah penting untuk kawalan perancangan hiliran. Tugas ramalan trajektori mempunyai timbunan teknologi yang kaya dan memerlukan kebiasaan dengan persepsi dinamik/statik pemanduan autonomi, peta ketepatan tinggi, garisan lorong, kemahiran seni bina rangkaian saraf (CNN&GNN&Transformer), dll. Sangat sukar untuk bermula! Ramai peminat berharap untuk memulakan ramalan trajektori secepat mungkin dan mengelakkan perangkap Hari ini saya akan mengambil kira beberapa masalah biasa dan kaedah pembelajaran pengenalan untuk ramalan trajektori! Pengetahuan berkaitan pengenalan 1. Adakah kertas pratonton teratur? A: Tengok survey dulu, hlm

DualBEV: mengatasi BEVFormer dan BEVDet4D dengan ketara, buka buku! DualBEV: mengatasi BEVFormer dan BEVDet4D dengan ketara, buka buku! Mar 21, 2024 pm 05:21 PM

Kertas kerja ini meneroka masalah mengesan objek dengan tepat dari sudut pandangan yang berbeza (seperti perspektif dan pandangan mata burung) dalam pemanduan autonomi, terutamanya cara mengubah ciri dari perspektif (PV) kepada ruang pandangan mata burung (BEV) dengan berkesan dilaksanakan melalui modul Transformasi Visual (VT). Kaedah sedia ada secara amnya dibahagikan kepada dua strategi: penukaran 2D kepada 3D dan 3D kepada 2D. Kaedah 2D-ke-3D meningkatkan ciri 2D yang padat dengan meramalkan kebarangkalian kedalaman, tetapi ketidakpastian yang wujud dalam ramalan kedalaman, terutamanya di kawasan yang jauh, mungkin menimbulkan ketidaktepatan. Manakala kaedah 3D ke 2D biasanya menggunakan pertanyaan 3D untuk mencuba ciri 2D dan mempelajari berat perhatian bagi kesesuaian antara ciri 3D dan 2D melalui Transformer, yang meningkatkan masa pengiraan dan penggunaan.

Bagaimana untuk menambah topeng PPT Bagaimana untuk menambah topeng PPT Mar 20, 2024 pm 12:28 PM

Berkenaan PPT masking, pasti ramai yang tidak faham dengannya ketika membuat PPT, tetapi hanya mengada-ngada untuk membuat apa yang mereka suka Oleh itu, ramai yang tidak tahu apa itu PPT masking, dan mereka juga tidak faham Saya tahu apa yang dilakukan oleh topeng ini, dan saya tidak tahu bahawa ia boleh menjadikan gambar itu kurang membosankan. Jadi, bagaimana untuk menambah topeng PPT? Sila baca di bawah. 1. Mula-mula kita buka PPT, pilih gambar kosong, kemudian klik kanan [Set Background Format] dan pilih warna pepejal. 2. Klik [Insert], word art, masukkan perkataan 3. Klik [Insert], klik [Shape]

Kesan pengkhususan templat C++ pada kelebihan beban dan mengatasi fungsi Kesan pengkhususan templat C++ pada kelebihan beban dan mengatasi fungsi Apr 20, 2024 am 09:09 AM

Pengkhususan templat C++ mempengaruhi lebihan beban dan penulisan semula fungsi: Kelebihan beban fungsi: Versi khusus boleh menyediakan pelaksanaan berbeza bagi jenis tertentu, sekali gus menjejaskan fungsi yang dipilih pengkompil untuk memanggil. Mengatasi fungsi: Versi khusus dalam kelas terbitan akan mengatasi fungsi templat dalam kelas asas, menjejaskan kelakuan objek kelas terbitan apabila memanggil fungsi.

Lebih daripada sekadar Gaussian 3D! Gambaran keseluruhan terkini teknik pembinaan semula 3D yang terkini Lebih daripada sekadar Gaussian 3D! Gambaran keseluruhan terkini teknik pembinaan semula 3D yang terkini Jun 02, 2024 pm 06:57 PM

Ditulis di atas & Pemahaman peribadi penulis ialah pembinaan semula 3D berasaskan imej ialah tugas mencabar yang melibatkan membuat inferens bentuk 3D objek atau pemandangan daripada set imej input. Kaedah berasaskan pembelajaran telah menarik perhatian kerana keupayaan mereka untuk menganggar secara langsung bentuk 3D. Kertas ulasan ini memfokuskan pada teknik pembinaan semula 3D yang canggih, termasuk menjana novel, pandangan ghaib. Gambaran keseluruhan perkembangan terkini dalam kaedah percikan Gaussian disediakan, termasuk jenis input, struktur model, perwakilan output dan strategi latihan. Cabaran yang tidak dapat diselesaikan dan hala tuju masa depan turut dibincangkan. Memandangkan kemajuan pesat dalam bidang ini dan banyak peluang untuk meningkatkan kaedah pembinaan semula 3D, pemeriksaan menyeluruh terhadap algoritma nampaknya penting. Oleh itu, kajian ini memberikan gambaran menyeluruh tentang kemajuan terkini dalam serakan Gaussian. (Leret ibu jari anda ke atas

Semakan! Gabungan model mendalam (LLM/model asas/pembelajaran bersekutu/penalaan halus, dsb.) Semakan! Gabungan model mendalam (LLM/model asas/pembelajaran bersekutu/penalaan halus, dsb.) Apr 18, 2024 pm 09:43 PM

Pada 23 September, kertas kerja "DeepModelFusion:ASurvey" diterbitkan oleh Universiti Teknologi Pertahanan Nasional, JD.com dan Institut Teknologi Beijing. Gabungan/penggabungan model dalam ialah teknologi baru muncul yang menggabungkan parameter atau ramalan berbilang model pembelajaran mendalam ke dalam satu model. Ia menggabungkan keupayaan model yang berbeza untuk mengimbangi bias dan ralat model individu untuk prestasi yang lebih baik. Gabungan model mendalam pada model pembelajaran mendalam berskala besar (seperti LLM dan model asas) menghadapi beberapa cabaran, termasuk kos pengiraan yang tinggi, ruang parameter berdimensi tinggi, gangguan antara model heterogen yang berbeza, dsb. Artikel ini membahagikan kaedah gabungan model dalam sedia ada kepada empat kategori: (1) "Sambungan corak", yang menghubungkan penyelesaian dalam ruang berat melalui laluan pengurangan kerugian untuk mendapatkan gabungan model awal yang lebih baik.

GPT-4o revolusioner: Membentuk semula pengalaman interaksi manusia-komputer GPT-4o revolusioner: Membentuk semula pengalaman interaksi manusia-komputer Jun 07, 2024 pm 09:02 PM

Model GPT-4o yang dikeluarkan oleh OpenAI sudah pasti satu kejayaan besar, terutamanya dalam keupayaannya untuk memproses berbilang media input (teks, audio, imej) dan menjana output yang sepadan. Keupayaan ini menjadikan interaksi manusia-komputer lebih semula jadi dan intuitif, meningkatkan kepraktisan dan kebolehgunaan AI. Beberapa sorotan utama GPT-4o termasuk: kebolehskalaan tinggi, input dan output multimedia, penambahbaikan selanjutnya dalam keupayaan pemahaman bahasa semula jadi, dsb. 1. Input/output merentas media: GPT-4o+ boleh menerima sebarang kombinasi teks, audio dan imej sebagai input dan terus menjana output daripada media ini. Ini memecahkan had model AI tradisional yang hanya memproses satu jenis input, menjadikan interaksi manusia-komputer lebih fleksibel dan pelbagai. Inovasi ini membantu kuasa pembantu pintar

See all articles