Isu penyelenggaraan konteks dalam chatbots
Isu penyelenggaraan konteks dalam chatbots memerlukan contoh kod khusus
Dalam beberapa tahun kebelakangan ini, chatbots telah digunakan secara meluas dalam pelbagai bidang. Chatbots menggunakan teknologi pemprosesan bahasa semula jadi untuk mengadakan perbualan dengan pengguna dan menyediakan maklumat dan perkhidmatan yang berkaitan. Walau bagaimanapun, isu penting dalam chatbots ialah cara mengekalkan konteks perbualan untuk lebih memahami niat pengguna dan dapat menjawab soalan pengguna dengan tepat.
Dalam peraturan tradisional atau chatbot berasaskan templat, penyelenggaraan konteks biasanya dicapai dengan menyimpan rekod perbualan sejarah pengguna. Walau bagaimanapun, kaedah ini sukar untuk menangani senario dialog yang kompleks, terutamanya untuk dialog jangka panjang dan pengumpulan konteks. Untuk menyelesaikan masalah ini, beberapa penyelidik telah mencadangkan beberapa kaedah berdasarkan pembelajaran mesin, seperti menggunakan rangkaian neural berulang (RNN) atau transformer untuk memodelkan maklumat kontekstual.
Berikut ialah contoh mudah untuk menggambarkan cara mencapai penyelenggaraan konteks dalam chatbot. Katakan kita ingin membangunkan robot pertanyaan cuaca yang boleh menanyakan maklumat cuaca bandar berdasarkan nama bandar yang disediakan oleh pengguna.
Pertama, kita perlu menyediakan set data yang mengandungi beberapa nama bandar dan maklumat cuaca yang sepadan. Sebagai contoh, kami boleh menyimpan data ini dalam fail csv bernama "weather_data.csv". Setiap baris mengandungi nama bandar dan maklumat cuaca yang sepadan, seperti "Beijing, hari yang cerah".
Seterusnya, kita boleh menulis bot sembang ringkas menggunakan Python dan menggunakan Rangkaian Neural Berulang (RNN) untuk mencapai penyelenggaraan konteks.
Pertama, kita perlu mengimport perpustakaan yang diperlukan:
import pandas as pd import numpy as np import tensorflow as tf from tensorflow.keras.layers import Dense, LSTM, Embedding from tensorflow.keras.preprocessing.text import Tokenizer from tensorflow.keras.preprocessing.sequence import pad_sequences
Kemudian, kita boleh memuatkan set data dan melakukan prapemprosesan:
data = pd.read_csv('weather_data.csv') city_names = data['city'].tolist() weather_conditions = data['weather'].tolist() # 使用Tokenizer对城市名称进行编码 tokenizer = Tokenizer() tokenizer.fit_on_texts(city_names) city_sequences = tokenizer.texts_to_sequences(city_names) # 构建输入和输出序列 input_sequences = [] output_sequences = [] for i in range(len(city_sequences)): input_sequences.append(city_sequences[i][:-1]) output_sequences.append(city_sequences[i][1:]) # 对输入和输出序列进行填充 max_sequence_length = max([len(seq) for seq in input_sequences]) input_sequences = pad_sequences(input_sequences, maxlen=max_sequence_length, padding='post') output_sequences = pad_sequences(output_sequences, maxlen=max_sequence_length, padding='post') # 构建训练样本和测试样本 train_size = int(0.8 * len(city_names)) train_input = input_sequences[:train_size] train_output = output_sequences[:train_size] test_input = input_sequences[train_size:] test_output = output_sequences[train_size:] # 构建词汇表 vocab_size = len(tokenizer.word_index) + 1
Next Kita boleh mentakrifkan model rangkaian saraf berulang (RNN) mudah dan melatihnya:
model = tf.keras.Sequential([ Embedding(vocab_size, 128, input_length=max_sequence_length-1), LSTM(128), Dense(vocab_size, activation='softmax') ]) model.compile(loss='sparse_categorical_crossentropy', optimizer='adam', metrics=['accuracy']) model.fit(train_input, train_output, epochs=10, verbose=1) # 评估模型性能 _, train_accuracy = model.evaluate(train_input, train_output, verbose=0) _, test_accuracy = model.evaluate(test_input, test_output, verbose=0) print("Train Accuracy: %.2f%%" % (train_accuracy * 100)) print("Test Accuracy: %.2f%%" % (test_accuracy * 100))
Akhirnya, kita boleh menggunakan model terlatih untuk membuat ramalan. Pengguna boleh memasukkan nama bandar dan chatbot akan mengeluarkan maklumat cuaca untuk bandar tersebut:
def predict_weather(city_name): input_sequence = tokenizer.texts_to_sequences([city_name]) input_sequence = pad_sequences(input_sequence, maxlen=max_sequence_length-1, padding='post') predicted_sequence = model.predict(input_sequence) predicted_word_index = np.argmax(predicted_sequence, axis=-1) predicted_word = tokenizer.index_word[predicted_word_index[0][0]] weather_info = data.loc[data['city'] == predicted_word, 'weather'].values[0] return weather_info # 用户输入城市名称 city_name = input("请输入城市名称:") weather_info = predict_weather(city_name) print("该城市的天气信息是:%s" % weather_info)
Dengan contoh kod di atas, kita boleh melihat cara menggunakan Rangkaian Neural Berulang (RNN) untuk melaksanakan konteks dalam chatbot mengekalkan. Chatbot boleh membuat ramalan berdasarkan input dan output pengguna maklumat cuaca yang sepadan. Apabila pengguna bertanya tentang cuaca di beberapa bandar, robot boleh menjawab soalan berdasarkan konteks perbualan sebelumnya dan memberikan jawapan yang tepat.
Sudah tentu, contoh di atas hanyalah demonstrasi mudah, dan lebih banyak pengoptimuman dan penambahbaikan mungkin diperlukan dalam aplikasi sebenar. Walau bagaimanapun, dengan contoh ini, kita boleh mendapatkan pemahaman awal tentang masalah penyelenggaraan konteks dalam chatbots dan menyelesaikannya dengan menggunakan teknik pembelajaran mesin.
Atas ialah kandungan terperinci Isu penyelenggaraan konteks dalam chatbots. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas





Artikel ini mengkaji semula penjana seni AI atas, membincangkan ciri -ciri mereka, kesesuaian untuk projek kreatif, dan nilai. Ia menyerlahkan Midjourney sebagai nilai terbaik untuk profesional dan mengesyorkan Dall-E 2 untuk seni berkualiti tinggi dan disesuaikan.

CHATGPT 4 kini tersedia dan digunakan secara meluas, menunjukkan penambahbaikan yang ketara dalam memahami konteks dan menjana tindak balas yang koheren berbanding dengan pendahulunya seperti ChATGPT 3.5. Perkembangan masa depan mungkin merangkumi lebih banyak Inter yang diperibadikan

Artikel ini membandingkan chatbots AI seperti Chatgpt, Gemini, dan Claude, yang memberi tumpuan kepada ciri -ciri unik mereka, pilihan penyesuaian, dan prestasi dalam pemprosesan bahasa semula jadi dan kebolehpercayaan.

Meta's Llama 3.2: Lompat ke hadapan dalam Multimodal dan Mobile AI META baru -baru ini melancarkan Llama 3.2, kemajuan yang ketara dalam AI yang memaparkan keupayaan penglihatan yang kuat dan model teks ringan yang dioptimumkan untuk peranti mudah alih. Membina kejayaan o

Artikel ini membincangkan pembantu penulisan AI terkemuka seperti Grammarly, Jasper, Copy.ai, WriteSonic, dan Rytr, yang memberi tumpuan kepada ciri -ciri unik mereka untuk penciptaan kandungan. Ia berpendapat bahawa Jasper cemerlang dalam pengoptimuman SEO, sementara alat AI membantu mengekalkan nada terdiri

Falcon 3: Model bahasa besar sumber terbuka revolusioner Falcon 3, lelaran terkini dalam siri Falcon yang terkenal LLMS, mewakili kemajuan yang ketara dalam teknologi AI. Dibangunkan oleh Institut Inovasi Teknologi (TII), ini terbuka

Artikel ini mengulas penjana suara AI atas seperti Google Cloud, Amazon Polly, Microsoft Azure, IBM Watson, dan Descript, memberi tumpuan kepada ciri -ciri mereka, kualiti suara, dan kesesuaian untuk keperluan yang berbeza.

2024 menyaksikan peralihan daripada menggunakan LLMS untuk penjanaan kandungan untuk memahami kerja dalaman mereka. Eksplorasi ini membawa kepada penemuan agen AI - sistem pengendalian sistem autonomi dan keputusan dengan intervensi manusia yang minimum. Buildin
