Rumah Peranti teknologi AI Masalah overfitting dalam algoritma pembelajaran mesin

Masalah overfitting dalam algoritma pembelajaran mesin

Oct 09, 2023 pm 04:36 PM
pembelajaran mesin algoritma overfitting

Masalah overfitting dalam algoritma pembelajaran mesin

Masalah terlalu muat dalam algoritma pembelajaran mesin memerlukan contoh kod khusus

Dalam bidang pembelajaran mesin, masalah terlalu sesuai model adalah salah satu cabaran biasa. Apabila model mengatasi data latihan, ia menjadi terlalu sensitif kepada hingar dan outlier, menyebabkan model berprestasi buruk pada data baharu. Untuk menyelesaikan masalah over-fitting, kita perlu mengambil beberapa kaedah yang berkesan semasa proses latihan model.

Pendekatan biasa adalah menggunakan teknik regularization seperti regularization L1 dan regularization L2. Teknik ini mengehadkan kerumitan model dengan menambahkan istilah penalti untuk mengelakkan model daripada terlampau pasang. Yang berikut menggunakan contoh kod khusus untuk menggambarkan cara menggunakan regularization L2 untuk menyelesaikan masalah overfitting.

Kami akan menggunakan bahasa Python dan perpustakaan pembelajaran Scikit untuk melaksanakan model regresi. Pertama, kami perlu mengimport perpustakaan yang diperlukan:

import numpy as np
from sklearn.linear_model import Ridge
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
Salin selepas log masuk

Seterusnya, kami mencipta set data palsu dengan 10 ciri dan pembolehubah sasaran. Ambil perhatian bahawa kami mensimulasikan data dunia sebenar dengan menambahkan beberapa hingar rawak:

np.random.seed(0)
n_samples = 1000
n_features = 10
X = np.random.randn(n_samples, n_features)
y = np.random.randn(n_samples) + 2*X[:, 0] + 3*X[:, 1] + np.random.randn(n_samples)*0.5
Salin selepas log masuk

Kemudian, kami membahagikan set data kepada set latihan dan ujian:

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
Salin selepas log masuk

Kini, kami boleh mencipta model regresi rabung dan menetapkan nilai regularisasi parameter alfa :

model = Ridge(alpha=0.1)
Salin selepas log masuk

Seterusnya, kami menggunakan set latihan untuk melatih model:

model.fit(X_train, y_train)
Salin selepas log masuk

Selepas latihan selesai, kami boleh menggunakan set ujian untuk menilai prestasi model:

y_pred = model.predict(X_test)
mse = mean_squared_error(y_test, y_pred)
print("Mean squared error: ", mse)
Salin selepas log masuk

Dalam contoh ini, kami menggunakan model regresi rabung , dan tetapkan parameter penaturan alfa kepada 0.1. Dengan menggunakan regularisasi L2, kerumitan model adalah terhad untuk membuat generalisasi yang lebih baik kepada data baharu. Semasa menilai prestasi model, kami mengira ralat kuasa dua min, yang menerangkan perbezaan antara nilai ramalan dan nilai sebenar.

Dengan melaraskan nilai alfa parameter regularisasi, kami boleh mengoptimumkan prestasi model. Apabila nilai alfa kecil, model akan cenderung untuk melebihkan data latihan apabila nilai alfa besar, model akan cenderung tidak sesuai. Dalam amalan, kami biasanya memilih nilai alfa yang optimum melalui pengesahan silang.

Untuk meringkaskan, masalah overfitting ialah cabaran biasa dalam pembelajaran mesin. Dengan menggunakan teknik regularization, seperti regularization L2, kita boleh mengehadkan kerumitan model untuk mengelakkan model daripada overfitting data latihan. Contoh kod di atas menunjukkan cara menggunakan model regresi rabung dan regularisasi L2 untuk menyelesaikan masalah overfitting. Semoga contoh ini akan membantu pembaca lebih memahami dan menggunakan teknik regularisasi.

Atas ialah kandungan terperinci Masalah overfitting dalam algoritma pembelajaran mesin. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

AI Hentai Generator

AI Hentai Generator

Menjana ai hentai secara percuma.

Artikel Panas

R.E.P.O. Kristal tenaga dijelaskan dan apa yang mereka lakukan (kristal kuning)
2 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Tetapan grafik terbaik
2 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Cara Memperbaiki Audio Jika anda tidak dapat mendengar sesiapa
2 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌

Alat panas

Notepad++7.3.1

Notepad++7.3.1

Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina

SublimeText3 versi Cina

Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1

Hantar Studio 13.0.1

Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6

Dreamweaver CS6

Alat pembangunan web visual

SublimeText3 versi Mac

SublimeText3 versi Mac

Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Artikel ini akan membawa anda memahami SHAP: penjelasan model untuk pembelajaran mesin Artikel ini akan membawa anda memahami SHAP: penjelasan model untuk pembelajaran mesin Jun 01, 2024 am 10:58 AM

Dalam bidang pembelajaran mesin dan sains data, kebolehtafsiran model sentiasa menjadi tumpuan penyelidik dan pengamal. Dengan aplikasi meluas model yang kompleks seperti kaedah pembelajaran mendalam dan ensemble, memahami proses membuat keputusan model menjadi sangat penting. AI|XAI yang boleh dijelaskan membantu membina kepercayaan dan keyakinan dalam model pembelajaran mesin dengan meningkatkan ketelusan model. Meningkatkan ketelusan model boleh dicapai melalui kaedah seperti penggunaan meluas pelbagai model yang kompleks, serta proses membuat keputusan yang digunakan untuk menerangkan model. Kaedah ini termasuk analisis kepentingan ciri, anggaran selang ramalan model, algoritma kebolehtafsiran tempatan, dsb. Analisis kepentingan ciri boleh menerangkan proses membuat keputusan model dengan menilai tahap pengaruh model ke atas ciri input. Anggaran selang ramalan model

Melaksanakan Algoritma Pembelajaran Mesin dalam C++: Cabaran dan Penyelesaian Biasa Melaksanakan Algoritma Pembelajaran Mesin dalam C++: Cabaran dan Penyelesaian Biasa Jun 03, 2024 pm 01:25 PM

Cabaran biasa yang dihadapi oleh algoritma pembelajaran mesin dalam C++ termasuk pengurusan memori, multi-threading, pengoptimuman prestasi dan kebolehselenggaraan. Penyelesaian termasuk menggunakan penunjuk pintar, perpustakaan benang moden, arahan SIMD dan perpustakaan pihak ketiga, serta mengikuti garis panduan gaya pengekodan dan menggunakan alat automasi. Kes praktikal menunjukkan cara menggunakan perpustakaan Eigen untuk melaksanakan algoritma regresi linear, mengurus memori dengan berkesan dan menggunakan operasi matriks berprestasi tinggi.

AI yang boleh dijelaskan: Menerangkan model AI/ML yang kompleks AI yang boleh dijelaskan: Menerangkan model AI/ML yang kompleks Jun 03, 2024 pm 10:08 PM

Penterjemah |. Disemak oleh Li Rui |. Chonglou Model kecerdasan buatan (AI) dan pembelajaran mesin (ML) semakin kompleks hari ini, dan output yang dihasilkan oleh model ini adalah kotak hitam – tidak dapat dijelaskan kepada pihak berkepentingan. AI Boleh Dijelaskan (XAI) bertujuan untuk menyelesaikan masalah ini dengan membolehkan pihak berkepentingan memahami cara model ini berfungsi, memastikan mereka memahami cara model ini sebenarnya membuat keputusan, dan memastikan ketelusan dalam sistem AI, Amanah dan akauntabiliti untuk menyelesaikan masalah ini. Artikel ini meneroka pelbagai teknik kecerdasan buatan (XAI) yang boleh dijelaskan untuk menggambarkan prinsip asasnya. Beberapa sebab mengapa AI boleh dijelaskan adalah penting Kepercayaan dan ketelusan: Untuk sistem AI diterima secara meluas dan dipercayai, pengguna perlu memahami cara keputusan dibuat

Lima sekolah pembelajaran mesin yang anda tidak tahu Lima sekolah pembelajaran mesin yang anda tidak tahu Jun 05, 2024 pm 08:51 PM

Pembelajaran mesin ialah cabang penting kecerdasan buatan yang memberikan komputer keupayaan untuk belajar daripada data dan meningkatkan keupayaan mereka tanpa diprogramkan secara eksplisit. Pembelajaran mesin mempunyai pelbagai aplikasi dalam pelbagai bidang, daripada pengecaman imej dan pemprosesan bahasa semula jadi kepada sistem pengesyoran dan pengesanan penipuan, dan ia mengubah cara hidup kita. Terdapat banyak kaedah dan teori yang berbeza dalam bidang pembelajaran mesin, antaranya lima kaedah yang paling berpengaruh dipanggil "Lima Sekolah Pembelajaran Mesin". Lima sekolah utama ialah sekolah simbolik, sekolah sambungan, sekolah evolusi, sekolah Bayesian dan sekolah analogi. 1. Simbolisme, juga dikenali sebagai simbolisme, menekankan penggunaan simbol untuk penaakulan logik dan ekspresi pengetahuan. Aliran pemikiran ini percaya bahawa pembelajaran adalah proses penolakan terbalik, melalui sedia ada

Algoritma pengesanan yang dipertingkatkan: untuk pengesanan sasaran dalam imej penderiaan jauh optik resolusi tinggi Algoritma pengesanan yang dipertingkatkan: untuk pengesanan sasaran dalam imej penderiaan jauh optik resolusi tinggi Jun 06, 2024 pm 12:33 PM

01Garis prospek Pada masa ini, sukar untuk mencapai keseimbangan yang sesuai antara kecekapan pengesanan dan hasil pengesanan. Kami telah membangunkan algoritma YOLOv5 yang dipertingkatkan untuk pengesanan sasaran dalam imej penderiaan jauh optik resolusi tinggi, menggunakan piramid ciri berbilang lapisan, strategi kepala pengesanan berbilang dan modul perhatian hibrid untuk meningkatkan kesan rangkaian pengesanan sasaran dalam imej penderiaan jauh optik. Menurut set data SIMD, peta algoritma baharu adalah 2.2% lebih baik daripada YOLOv5 dan 8.48% lebih baik daripada YOLOX, mencapai keseimbangan yang lebih baik antara hasil pengesanan dan kelajuan. 02 Latar Belakang & Motivasi Dengan perkembangan pesat teknologi penderiaan jauh, imej penderiaan jauh optik resolusi tinggi telah digunakan untuk menggambarkan banyak objek di permukaan bumi, termasuk pesawat, kereta, bangunan, dll. Pengesanan objek dalam tafsiran imej penderiaan jauh

Adakah Flash Attention stabil? Meta dan Harvard mendapati bahawa sisihan berat model mereka berubah-ubah mengikut urutan magnitud Adakah Flash Attention stabil? Meta dan Harvard mendapati bahawa sisihan berat model mereka berubah-ubah mengikut urutan magnitud May 30, 2024 pm 01:24 PM

MetaFAIR bekerjasama dengan Harvard untuk menyediakan rangka kerja penyelidikan baharu untuk mengoptimumkan bias data yang dijana apabila pembelajaran mesin berskala besar dilakukan. Adalah diketahui bahawa latihan model bahasa besar sering mengambil masa berbulan-bulan dan menggunakan ratusan atau bahkan ribuan GPU. Mengambil model LLaMA270B sebagai contoh, latihannya memerlukan sejumlah 1,720,320 jam GPU. Melatih model besar memberikan cabaran sistemik yang unik disebabkan oleh skala dan kerumitan beban kerja ini. Baru-baru ini, banyak institusi telah melaporkan ketidakstabilan dalam proses latihan apabila melatih model AI generatif SOTA Mereka biasanya muncul dalam bentuk lonjakan kerugian Contohnya, model PaLM Google mengalami sehingga 20 lonjakan kerugian semasa proses latihan. Bias berangka adalah punca ketidaktepatan latihan ini,

Tinjauan tentang trend masa depan teknologi Golang dalam pembelajaran mesin Tinjauan tentang trend masa depan teknologi Golang dalam pembelajaran mesin May 08, 2024 am 10:15 AM

Potensi aplikasi bahasa Go dalam bidang pembelajaran mesin adalah besar Kelebihannya ialah: Concurrency: Ia menyokong pengaturcaraan selari dan sesuai untuk operasi intensif pengiraan dalam tugas pembelajaran mesin. Kecekapan: Pengumpul sampah dan ciri bahasa memastikan kod itu cekap, walaupun semasa memproses set data yang besar. Kemudahan penggunaan: Sintaksnya ringkas, menjadikannya mudah untuk belajar dan menulis aplikasi pembelajaran mesin.

Pembelajaran Mesin dalam C++: Panduan untuk Melaksanakan Algoritma Pembelajaran Mesin Biasa dalam C++ Pembelajaran Mesin dalam C++: Panduan untuk Melaksanakan Algoritma Pembelajaran Mesin Biasa dalam C++ Jun 03, 2024 pm 07:33 PM

Dalam C++, pelaksanaan algoritma pembelajaran mesin termasuk: Regresi linear: digunakan untuk meramalkan pembolehubah berterusan Langkah-langkah termasuk memuatkan data, mengira berat dan berat sebelah, mengemas kini parameter dan ramalan. Regresi logistik: digunakan untuk meramalkan pembolehubah diskret Proses ini serupa dengan regresi linear, tetapi menggunakan fungsi sigmoid untuk ramalan. Mesin Vektor Sokongan: Algoritma klasifikasi dan regresi yang berkuasa yang melibatkan pengkomputeran vektor sokongan dan label ramalan.

See all articles