Rumah Peranti teknologi AI Bahasa, pemecahan robot, MIT dan lain-lain menggunakan GPT-4 untuk menjana tugas simulasi secara automatik dan memindahkannya ke dunia nyata

Bahasa, pemecahan robot, MIT dan lain-lain menggunakan GPT-4 untuk menjana tugas simulasi secara automatik dan memindahkannya ke dunia nyata

Oct 16, 2023 pm 02:21 PM
data kereta api

Bahasa, pemecahan robot, MIT dan lain-lain menggunakan GPT-4 untuk menjana tugas simulasi secara automatik dan memindahkannya ke dunia nyata

Dalam bidang robotik, melaksanakan strategi robotik sejagat memerlukan sejumlah besar data, dan mengumpul data ini di dunia nyata memakan masa dan susah payah. Walaupun simulasi menyediakan penyelesaian yang menjimatkan untuk menjana volum data yang berbeza pada peringkat kejadian dan contoh, peningkatan kepelbagaian tugas dalam persekitaran simulasi masih menghadapi cabaran disebabkan oleh jumlah tenaga kerja yang besar yang diperlukan (terutama untuk tugas yang kompleks). Ini menghasilkan tanda aras simulasi tiruan biasa yang biasanya mengandungi hanya puluhan hingga ratusan tugasan.

Bagaimana untuk menyelesaikannya? Dalam beberapa tahun kebelakangan ini, model bahasa yang besar telah terus membuat kemajuan yang ketara dalam pemprosesan bahasa semula jadi dan penjanaan kod untuk pelbagai tugas. Begitu juga, LLM telah digunakan pada pelbagai aspek robotik, termasuk antara muka pengguna, perancangan tugas dan gerakan, ringkasan log robot, reka bentuk kos dan ganjaran, mendedahkan keupayaan kukuh dalam kedua-dua tugasan berasaskan fizik dan penjanaan kod.

Dalam kajian baru-baru ini, penyelidik dari MIT CSAIL, Shanghai Jiao Tong University dan institusi lain meneroka dengan lebih lanjut sama ada LLM boleh digunakan untuk mencipta pelbagai tugas simulasi dan meneroka keupayaan mereka.

Secara khusus, para penyelidik mencadangkan rangka kerja GenSim berasaskan LLM, yang menyediakan mekanisme automatik untuk mereka bentuk dan mengesahkan susunan aset tugas dan kemajuan tugas. Lebih penting lagi, tugasan yang dihasilkan mempamerkan kepelbagaian yang hebat, mempromosikan generalisasi peringkat tugas bagi strategi robot. Tambahan pula, dari segi konsep, dengan GenSim, keupayaan penaakulan dan pengekodan LLM diperhalusi ke dalam strategi tindakan visual-bahasa melalui sintesis perantaraan data simulasi. Alamat

Bahasa, pemecahan robot, MIT dan lain-lain menggunakan GPT-4 untuk menjana tugas simulasi secara automatik dan memindahkannya ke dunia nyata

Paper: https://arxiv.org/pdf/2310.01361.pdf

Rangka kerja Gensim terdiri daripada tiga bahagian berikut:

  • Tugas dan mekanisme segera untuk yang sepadan pelaksanaan kod;
  • Kedua, pustaka tugasan yang menjana kod arahan berkualiti tinggi sebelum ini untuk pengesahan dan penalaan model bahasa, dan mengembalikannya sebagai set data tugasan yang komprehensif
  • Akhir sekali, penggunaan bahasa-; talian paip latihan dasar pelbagai tugas yang ditala yang menjana data untuk meningkatkan generalisasi peringkat tugas.

Rangka kerja beroperasi melalui dua mod berbeza pada masa yang sama. Antaranya, dalam tetapan berorientasikan matlamat, pengguna mempunyai tugas tertentu atau ingin mereka bentuk kursus tugas. Pada masa ini, GenSim menggunakan pendekatan atas ke bawah, mengambil tugas yang dijangkakan sebagai input dan secara berulang menjana tugas berkaitan untuk mencapai matlamat yang diharapkan. Dalam persekitaran penerokaan, jika terdapat kekurangan pengetahuan awal tentang tugas sasaran, GenSim secara beransur-ansur meneroka kandungan di luar tugasan sedia ada dan menetapkan strategi asas yang bebas daripada tugas.

Dalam Rajah 1 di bawah, penyelidik memulakan perpustakaan tugasan yang mengandungi 10 tugasan yang disusun secara manual, menggunakan GenSim untuk melanjutkannya dan menjana lebih daripada 100 tugasan.

Bahasa, pemecahan robot, MIT dan lain-lain menggunakan GPT-4 untuk menjana tugas simulasi secara automatik dan memindahkannya ke dunia nyata

Para penyelidik juga mencadangkan beberapa metrik tersuai untuk mengukur secara progresif kualiti tugasan simulasi yang dijana, dan menilai beberapa LLM dalam tetapan berorientasikan matlamat dan penerokaan. Untuk perpustakaan tugasan yang dijana oleh GPT-4, mereka melakukan penalaan halus diselia pada LLM seperti GPT-3.5 dan Code-Llama, meningkatkan lagi prestasi penjanaan tugas LLM. Pada masa yang sama, kebolehcapaian tugasan diukur secara kuantitatif melalui latihan strategi, dan statistik tugasan atribut yang berbeza dan perbandingan kod antara model yang berbeza disediakan.

Bukan itu sahaja, para penyelidik juga melatih strategi robot berbilang tugas yang menyamaratakan dengan baik pada semua tugasan generasi dan meningkatkan prestasi sifar pukulan berbanding model yang dilatih hanya pada tugasan perancangan manusia. Latihan bersama dengan tugas penjanaan GPT-4 meningkatkan prestasi generalisasi sebanyak 50% dan memindahkan kira-kira 40% tugasan sifar kepada tugasan baharu dalam simulasi.

Akhirnya, penyelidik juga mempertimbangkan pemindahan simulasi kepada sebenar, menunjukkan bahawa pra-latihan pada tugas simulasi yang berbeza boleh meningkatkan keupayaan generalisasi dunia sebenar sebanyak 25%.

Ringkasnya, dasar yang dilatih mengenai tugas yang dihasilkan oleh LLM yang berbeza mencapai generalisasi peringkat tugasan yang lebih baik kepada tugasan baharu, menyerlahkan potensi melanjutkan tugasan simulasi melalui LLM untuk melatih dasar asas.

#🎜🎜 #Pengarah pengurusan produk Tenstorrent AI Shubham Saboo memberikan pujian tinggi kepada penyelidikan ini. Beliau berkata ini adalah penyelidikan terobosan mengenai GPT-4 yang digabungkan dengan robot, menggunakan LLM seperti GPT-4 untuk menjana autopilot tugasan robot simulasi menjadikan pembelajaran sampel sifar dan penyesuaian dunia sebenar robot menjadi realiti.

Bahasa, pemecahan robot, MIT dan lain-lain menggunakan GPT-4 untuk menjana tugas simulasi secara automatik dan memindahkannya ke dunia nyata

Pengenalan kaedah#####🎜🎜🎜 Seperti yang ditunjukkan dalam Rajah 2 di bawah, rangka kerja GenSim menjana persekitaran simulasi, tugasan dan demonstrasi melalui sintesis program. Saluran paip GenSim bermula daripada pencipta tugas, dan rantaian segera berjalan dalam dua mod, mod terarah matlamat dan mod penerokaan, bergantung pada tugas sasaran. Pustaka tugas dalam GenSim ialah komponen dalam memori yang digunakan untuk menyimpan tugasan berkualiti tinggi yang dijana sebelum ini Tugasan yang disimpan dalam pustaka tugas boleh digunakan untuk latihan dasar berbilang tugas atau LLM menyempurnakan.

Bahasa, pemecahan robot, MIT dan lain-lain menggunakan GPT-4 untuk menjana tugas simulasi secara automatik dan memindahkannya ke dunia nyata#🎜🎜 ###Task Creator🎜🎜 ###Task Creator🎜

Seperti yang ditunjukkan dalam Rajah 3 di bawah, rantai bahasa akan mula-mula menjana penerangan tugas, dan kemudian menjana pelaksanaan yang berkaitan. Perihalan tugas termasuk nama tugas, sumber dan ringkasan tugas. Kajian ini menggunakan gesaan beberapa sampel dalam perancangan untuk menjana kod.

#Task Library🎜🎜##Task Library#🎜 Bahasa, pemecahan robot, MIT dan lain-lain menggunakan GPT-4 untuk menjana tugas simulasi secara automatik dan memindahkannya ke dunia nyataPustaka tugas dalam rangka kerja GenSim menyimpan tugas yang dijana oleh pencipta tugas untuk menjana tugas baharu yang lebih baik dan melatih strategi pelbagai tugas. Pustaka tugasan dimulakan berdasarkan tugasan daripada penanda aras yang dibuat secara manual.

Pustaka tugas menyediakan pencipta tugasan dengan perihalan tugasan sebelumnya sebagai syarat untuk fasa penjanaan penerangan, menyediakan kod sebelumnya untuk fasa penjanaan kod dan menggesa tugasan penciptaan Pengkompil memilih tugas rujukan daripada perpustakaan tugasan sebagai contoh untuk menulis tugasan baharu. Selepas pelaksanaan tugas selesai dan semua ujian telah lulus, LLM digesa untuk "merefleksikan" pada tugasan baharu dan pustaka tugasan, dan membentuk keputusan komprehensif sama ada tugasan yang baru dijana perlu ditambahkan ke perpustakaan.

Seperti yang ditunjukkan dalam Rajah 4 di bawah, kajian juga mendapati bahawa GenSim mempamerkan gabungan peringkat tugasan dan tingkah laku ekstrapolasi yang menarik: #🎜 🎜 #

LLM Supervised Multitasking Strategy#🎜#

#🎜##🎜#

#🎜🎜 🎜🎜#Selepas menjana tugas, kajian ini menggunakan pelaksanaan tugas ini untuk menjana data demonstrasi dan melatih strategi operasi, menggunakan seni bina rangkaian penghantaran dwi-strim yang serupa dengan Shridhar et al (2022). Bahasa, pemecahan robot, MIT dan lain-lain menggunakan GPT-4 untuk menjana tugas simulasi secara automatik dan memindahkannya ke dunia nyata

Seperti yang ditunjukkan dalam Rajah 5 di bawah, kajian ini menganggap program ini sebagai representasi yang berkesan bagi tugas dan data demonstrasi yang berkaitan (Rajah 5), dan ruang pemasukan antara tugas boleh ditakrifkan, yang metrik jaraknya lebih teguh kepada pelbagai faktor yang diperoleh daripada persepsi, seperti pose dan bentuk objek.

Eksperimen dan keputusan#🎜🎜🎜🎜🎜🎜🎜 #

Kajian ini mengesahkan rangka kerja GenSim melalui eksperimen dan menangani soalan khusus berikut: (1) Sejauh manakah LLM berkesan dalam mereka bentuk dan melaksanakan tugas simulasi? Bolehkah GenSim meningkatkan prestasi LLM dalam penjanaan tugas? (2) Bolehkah latihan mengenai tugas yang dihasilkan oleh LLM meningkatkan keupayaan generalisasi dasar? Adakah latihan dasar akan mendapat lebih banyak manfaat jika diberi lebih banyak tugas generasi? (3) Adakah pra-latihan tentang tugasan simulasi yang dijana oleh LLM memudahkan penggunaan dasar robot dunia sebenar?

Nilai keupayaan generalisasi tugas simulasi robot LLM Bahasa, pemecahan robot, MIT dan lain-lain menggunakan GPT-4 untuk menjana tugas simulasi secara automatik dan memindahkannya ke dunia nyata#🎜🎜🎜🎜🎜🎜🎜 seperti berikut Seperti yang ditunjukkan dalam Rajah 6, untuk mod penerokaan dan penjanaan tugas mod berorientasikan matlamat, rantaian segera dua peringkat bagi beberapa sampel dan perpustakaan tugasan boleh meningkatkan kadar kejayaan penjanaan kod dengan berkesan.

Task Level Generalization🎜🎜 #

Pengoptimuman strategi beberapa pukulan untuk tugasan yang berkaitan. Seperti yang boleh diperhatikan dari sebelah kiri Rajah 7 di bawah, latihan bersama tugas yang dijana oleh LLM boleh meningkatkan prestasi dasar pada tugasan CLIPort asal sebanyak lebih daripada 50%, terutamanya dalam situasi data rendah (seperti 5 demo).

Pengitraman dasar sifar kepada tugas yang tidak kelihatan. Seperti yang dapat dilihat dalam Rajah 7, dengan pra-latihan pada lebih banyak tugas yang dihasilkan oleh LLM, model kami boleh membuat generalisasi dengan lebih baik kepada tugas dalam penanda aras Ravens yang asal. Di bahagian tengah sebelah kanan Rajah 7, penyelidik juga telah melatih 5 tugasan pada sumber tugasan yang berbeza, termasuk tugasan tulisan manusia, LLM sumber tertutup dan LLM diperhalusi sumber terbuka, dan memerhatikan tugasan sifar pukulan yang serupa- generalisasi tahap. . Keputusan ditunjukkan dalam Jadual 1 di bawah Model pra-latihan pada 70 GPT-4 menjana tugasan menjalankan 10 eksperimen pada 9 tugasan dan mencapai kadar kejayaan purata 68.8%, yang lebih baik daripada pra-latihan pada tugasan CLIPort sahaja. Berbanding dengan model garis dasar, ia telah bertambah baik sebanyak lebih daripada 25%, dan berbanding dengan model yang telah dilatih pada hanya 50 tugasan, ia telah bertambah baik sebanyak 15%.

Bahasa, pemecahan robot, MIT dan lain-lain menggunakan GPT-4 untuk menjana tugas simulasi secara automatik dan memindahkannya ke dunia nyata

Para penyelidik juga memerhatikan bahawa pra-latihan pada tugas simulasi yang berbeza meningkatkan keteguhan tugas kompleks jangka panjang. Sebagai contoh, model pra-latihan GPT-4 menunjukkan prestasi yang lebih mantap pada tugas binaan dunia sebenar.

Eksperimen AblationBahasa, pemecahan robot, MIT dan lain-lain menggunakan GPT-4 untuk menjana tugas simulasi secara automatik dan memindahkannya ke dunia nyata

Kadar kejayaan latihan simulasi. Dalam Jadual 2 di bawah, penyelidik menunjukkan kadar kejayaan latihan dasar tugasan tunggal dan berbilang tugas pada subset tugasan yang dijana dengan 200 tunjuk cara. Untuk latihan dasar mengenai tugas penjanaan GPT-4, kadar kejayaan tugas puratanya ialah 75.8% untuk tugasan tunggal dan 74.1% untuk berbilang tugas.

Bahasa, pemecahan robot, MIT dan lain-lain menggunakan GPT-4 untuk menjana tugas simulasi secara automatik dan memindahkannya ke dunia nyata

Jana statistik tugasan. Dalam Rajah 9 (a) di bawah, penyelidik menunjukkan statistik tugasan bagi ciri-ciri berbeza bagi 120 tugasan yang dihasilkan oleh LLM. Terdapat keseimbangan yang menarik antara warna, aset, tindakan dan bilangan kejadian yang dijana oleh model LLM. Sebagai contoh, kod yang dijana mengandungi banyak adegan dengan lebih daripada 7 tika objek, serta banyak tindakan primitif pilih-dan-tempat dan aset seperti blok.

Perbandingan penjanaan kod. Dalam Rajah 9(b) di bawah, penyelidik menilai secara kualitatif kes kegagalan dalam eksperimen atas ke bawah GPT-4 dan Kod Llama.

Bahasa, pemecahan robot, MIT dan lain-lain menggunakan GPT-4 untuk menjana tugas simulasi secara automatik dan memindahkannya ke dunia nyata

Sila rujuk kertas asal untuk butiran lanjut teknikal.

Atas ialah kandungan terperinci Bahasa, pemecahan robot, MIT dan lain-lain menggunakan GPT-4 untuk menjana tugas simulasi secara automatik dan memindahkannya ke dunia nyata. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

AI Hentai Generator

AI Hentai Generator

Menjana ai hentai secara percuma.

Artikel Panas

R.E.P.O. Kristal tenaga dijelaskan dan apa yang mereka lakukan (kristal kuning)
3 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Tetapan grafik terbaik
3 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Cara Memperbaiki Audio Jika anda tidak dapat mendengar sesiapa
3 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: Cara Membuka Segala -galanya Di Myrise
3 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌

Alat panas

Notepad++7.3.1

Notepad++7.3.1

Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina

SublimeText3 versi Cina

Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1

Hantar Studio 13.0.1

Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6

Dreamweaver CS6

Alat pembangunan web visual

SublimeText3 versi Mac

SublimeText3 versi Mac

Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Gunakan ddrescue untuk memulihkan data pada Linux Gunakan ddrescue untuk memulihkan data pada Linux Mar 20, 2024 pm 01:37 PM

DDREASE ialah alat untuk memulihkan data daripada fail atau peranti sekat seperti cakera keras, SSD, cakera RAM, CD, DVD dan peranti storan USB. Ia menyalin data dari satu peranti blok ke peranti lain, meninggalkan blok data yang rosak dan hanya memindahkan blok data yang baik. ddreasue ialah alat pemulihan yang berkuasa yang automatik sepenuhnya kerana ia tidak memerlukan sebarang gangguan semasa operasi pemulihan. Selain itu, terima kasih kepada fail peta ddasue, ia boleh dihentikan dan disambung semula pada bila-bila masa. Ciri-ciri utama lain DDREASE adalah seperti berikut: Ia tidak menimpa data yang dipulihkan tetapi mengisi jurang sekiranya pemulihan berulang. Walau bagaimanapun, ia boleh dipotong jika alat itu diarahkan untuk melakukannya secara eksplisit. Pulihkan data daripada berbilang fail atau blok kepada satu

Sumber terbuka! Di luar ZoeDepth! DepthFM: Anggaran kedalaman monokular yang cepat dan tepat! Sumber terbuka! Di luar ZoeDepth! DepthFM: Anggaran kedalaman monokular yang cepat dan tepat! Apr 03, 2024 pm 12:04 PM

0. Apakah fungsi artikel ini? Kami mencadangkan DepthFM: model anggaran kedalaman monokular generatif yang serba boleh dan pantas. Sebagai tambahan kepada tugas anggaran kedalaman tradisional, DepthFM juga menunjukkan keupayaan terkini dalam tugas hiliran seperti mengecat kedalaman. DepthFM cekap dan boleh mensintesis peta kedalaman dalam beberapa langkah inferens. Mari kita baca karya ini bersama-sama ~ 1. Tajuk maklumat kertas: DepthFM: FastMonocularDepthEstimationwithFlowMatching Pengarang: MingGui, JohannesS.Fischer, UlrichPrestel, PingchuanMa, Dmytr

Hello, Atlas elektrik! Robot Boston Dynamics hidup semula, gerakan pelik 180 darjah menakutkan Musk Hello, Atlas elektrik! Robot Boston Dynamics hidup semula, gerakan pelik 180 darjah menakutkan Musk Apr 18, 2024 pm 07:58 PM

Boston Dynamics Atlas secara rasmi memasuki era robot elektrik! Semalam, Atlas hidraulik hanya "menangis" menarik diri daripada peringkat sejarah Hari ini, Boston Dynamics mengumumkan bahawa Atlas elektrik sedang berfungsi. Nampaknya dalam bidang robot humanoid komersial, Boston Dynamics berazam untuk bersaing dengan Tesla. Selepas video baharu itu dikeluarkan, ia telah pun ditonton oleh lebih sejuta orang dalam masa sepuluh jam sahaja. Orang lama pergi dan peranan baru muncul. Ini adalah keperluan sejarah. Tidak dinafikan bahawa tahun ini adalah tahun letupan robot humanoid. Netizen mengulas: Kemajuan robot telah menjadikan majlis pembukaan tahun ini kelihatan seperti manusia, dan tahap kebebasan adalah jauh lebih besar daripada manusia Tetapi adakah ini benar-benar bukan filem seram? Pada permulaan video, Atlas berbaring dengan tenang di atas tanah, seolah-olah terlentang. Apa yang berikut adalah rahang-jatuh

Google gembira: prestasi JAX mengatasi Pytorch dan TensorFlow! Ia mungkin menjadi pilihan terpantas untuk latihan inferens GPU Google gembira: prestasi JAX mengatasi Pytorch dan TensorFlow! Ia mungkin menjadi pilihan terpantas untuk latihan inferens GPU Apr 01, 2024 pm 07:46 PM

Prestasi JAX, yang dipromosikan oleh Google, telah mengatasi Pytorch dan TensorFlow dalam ujian penanda aras baru-baru ini, menduduki tempat pertama dalam 7 penunjuk. Dan ujian tidak dilakukan pada TPU dengan prestasi JAX terbaik. Walaupun dalam kalangan pembangun, Pytorch masih lebih popular daripada Tensorflow. Tetapi pada masa hadapan, mungkin lebih banyak model besar akan dilatih dan dijalankan berdasarkan platform JAX. Model Baru-baru ini, pasukan Keras menanda aras tiga hujung belakang (TensorFlow, JAX, PyTorch) dengan pelaksanaan PyTorch asli dan Keras2 dengan TensorFlow. Pertama, mereka memilih satu set arus perdana

Kelajuan Internet Data Selular Perlahan pada iPhone: Pembetulan Kelajuan Internet Data Selular Perlahan pada iPhone: Pembetulan May 03, 2024 pm 09:01 PM

Menghadapi ketinggalan, sambungan data mudah alih perlahan pada iPhone? Biasanya, kekuatan internet selular pada telefon anda bergantung pada beberapa faktor seperti rantau, jenis rangkaian selular, jenis perayauan, dsb. Terdapat beberapa perkara yang boleh anda lakukan untuk mendapatkan sambungan Internet selular yang lebih pantas dan boleh dipercayai. Betulkan 1 – Paksa Mulakan Semula iPhone Kadangkala, paksa memulakan semula peranti anda hanya menetapkan semula banyak perkara, termasuk sambungan selular. Langkah 1 – Hanya tekan kekunci naikkan kelantangan sekali dan lepaskan. Seterusnya, tekan kekunci Turun Kelantangan dan lepaskannya semula. Langkah 2 - Bahagian seterusnya proses adalah untuk menahan butang di sebelah kanan. Biarkan iPhone selesai dimulakan semula. Dayakan data selular dan semak kelajuan rangkaian. Semak semula Betulkan 2 – Tukar mod data Walaupun 5G menawarkan kelajuan rangkaian yang lebih baik, ia berfungsi lebih baik apabila isyarat lemah

Versi Kuaishou Sora 'Ke Ling' dibuka untuk ujian: menghasilkan video lebih 120-an, memahami fizik dengan lebih baik dan boleh memodelkan pergerakan kompleks dengan tepat Versi Kuaishou Sora 'Ke Ling' dibuka untuk ujian: menghasilkan video lebih 120-an, memahami fizik dengan lebih baik dan boleh memodelkan pergerakan kompleks dengan tepat Jun 11, 2024 am 09:51 AM

Apa? Adakah Zootopia dibawa menjadi realiti oleh AI domestik? Didedahkan bersama-sama dengan video itu ialah model penjanaan video domestik berskala besar baharu yang dipanggil "Keling". Sora menggunakan laluan teknikal yang serupa dan menggabungkan beberapa inovasi teknologi yang dibangunkan sendiri untuk menghasilkan video yang bukan sahaja mempunyai pergerakan yang besar dan munasabah, tetapi juga mensimulasikan ciri-ciri dunia fizikal dan mempunyai keupayaan gabungan konsep dan imaginasi yang kuat. Mengikut data, Keling menyokong penjanaan video ultra panjang sehingga 2 minit pada 30fps, dengan resolusi sehingga 1080p dan menyokong berbilang nisbah aspek. Satu lagi perkara penting ialah Keling bukanlah demo atau demonstrasi hasil video yang dikeluarkan oleh makmal, tetapi aplikasi peringkat produk yang dilancarkan oleh Kuaishou, pemain terkemuka dalam bidang video pendek. Selain itu, tumpuan utama adalah untuk menjadi pragmatik, bukan untuk menulis cek kosong, dan pergi ke dalam talian sebaik sahaja ia dikeluarkan Model besar Ke Ling telah pun dikeluarkan di Kuaiying.

Daya hidup kecerdasan super membangkitkan! Tetapi dengan kedatangan AI yang mengemas kini sendiri, ibu tidak perlu lagi bimbang tentang kesesakan data Daya hidup kecerdasan super membangkitkan! Tetapi dengan kedatangan AI yang mengemas kini sendiri, ibu tidak perlu lagi bimbang tentang kesesakan data Apr 29, 2024 pm 06:55 PM

Saya menangis hingga mati. Dunia sedang membina model besar. Data di Internet tidak mencukupi. Model latihan kelihatan seperti "The Hunger Games", dan penyelidik AI di seluruh dunia bimbang tentang cara memberi makan data ini kepada pemakan yang rakus. Masalah ini amat ketara dalam tugas berbilang modal. Pada masa mereka mengalami kerugian, pasukan pemula dari Jabatan Universiti Renmin China menggunakan model baharu mereka sendiri untuk menjadi yang pertama di China untuk menjadikan "suapan data yang dijana model itu sendiri" menjadi kenyataan. Selain itu, ia merupakan pendekatan serampang dua mata dari segi pemahaman dan sisi penjanaan Kedua-dua pihak boleh menjana data baharu berbilang modal yang berkualiti tinggi dan memberikan maklum balas data kepada model itu sendiri. Apakah model? Awaker 1.0, model berbilang modal besar yang baru sahaja muncul di Forum Zhongguancun. Siapa pasukan itu? Enjin Sophon. Diasaskan oleh Gao Yizhao, pelajar kedoktoran di Sekolah Kecerdasan Buatan Hillhouse Universiti Renmin.

Tentera Udara A.S. mempamerkan jet pejuang AI pertamanya dengan profil tinggi! Menteri secara peribadi menjalankan pandu uji tanpa campur tangan semasa keseluruhan proses, dan 100,000 baris kod telah diuji selama 21 kali. Tentera Udara A.S. mempamerkan jet pejuang AI pertamanya dengan profil tinggi! Menteri secara peribadi menjalankan pandu uji tanpa campur tangan semasa keseluruhan proses, dan 100,000 baris kod telah diuji selama 21 kali. May 07, 2024 pm 05:00 PM

Baru-baru ini, bulatan tentera telah terharu dengan berita: jet pejuang tentera AS kini boleh melengkapkan pertempuran udara automatik sepenuhnya menggunakan AI. Ya, baru-baru ini, jet pejuang AI tentera AS telah didedahkan buat pertama kali, mendedahkan misterinya. Nama penuh pesawat pejuang ini ialah Variable Stability Simulator Test Aircraft (VISTA). Ia diterbangkan sendiri oleh Setiausaha Tentera Udara AS untuk mensimulasikan pertempuran udara satu lawan satu. Pada 2 Mei, Setiausaha Tentera Udara A.S. Frank Kendall berlepas menggunakan X-62AVISTA di Pangkalan Tentera Udara Edwards Ambil perhatian bahawa semasa penerbangan selama satu jam, semua tindakan penerbangan telah diselesaikan secara autonomi oleh AI! Kendall berkata - "Sejak beberapa dekad yang lalu, kami telah memikirkan tentang potensi tanpa had pertempuran udara-ke-udara autonomi, tetapi ia sentiasa kelihatan di luar jangkauan." Namun kini,

See all articles