Rumah Peranti teknologi AI Pilih GPT-3.5 atau Jordan Llama 2 dan model sumber terbuka yang lain? Selepas perbandingan menyeluruh, jawapannya ialah

Pilih GPT-3.5 atau Jordan Llama 2 dan model sumber terbuka yang lain? Selepas perbandingan menyeluruh, jawapannya ialah

Oct 16, 2023 pm 06:45 PM
gpt-3.5 projek llama 2

Dengan membandingkan parameter GPT-3.5 dan Llama 2 pada tugasan yang berbeza, kita boleh mengetahui dalam keadaan apa memilih GPT-3.5 dan dalam keadaan apa memilih Llama 2 atau model lain.

Nampaknya, tork GPT-3.5 sangat mahal. Kertas kerja ini secara eksperimen mengesahkan sama ada model tork manual boleh mendekati prestasi GPT-3.5 pada sebahagian kecil daripada kos GPT-3.5. Menariknya, kertas itu melakukannya.

Membandingkan keputusan pada tugas SQL dan tugas perwakilan fungsi, kertas itu mendapati:

  • GPT-3.5 lebih baik daripada Kod selepas Lora pada kedua-dua set data (subset set data Spider dan set data perwakilan fungsi Viggo ) Llama 34B menunjukkan prestasi yang lebih baik sedikit.

  • Kos latihan GPT-3.5 adalah 4-6 kali lebih tinggi, dan kos penggunaan juga lebih tinggi.

Salah satu kesimpulan eksperimen ini ialah GPT-3.5 sesuai untuk kerja pengesahan awal, tetapi selepas itu, model seperti Llama 2 mungkin pilihan terbaik, untuk meringkaskan secara ringkas:

  • Jika anda mahukan pengesahan untuk menyelesaikan khusus Pendekatan yang betul untuk tugasan/set data anda, atau jika anda mahukan persekitaran terurus sepenuhnya, kemudian laraskan GPT-3.5.

  • Jika anda ingin menjimatkan wang, dapatkan prestasi maksimum daripada set data anda, mempunyai lebih fleksibiliti dalam melatih dan menggunakan infrastruktur, dan mahu atau mengekalkan beberapa data, kemudian gunakan sesuatu seperti model sumber Terbuka Llama 2.

Seterusnya mari kita lihat bagaimana kertas kerja itu dilaksanakan.

Rajah di bawah menunjukkan prestasi Kod Llama 34B dan GPT-3.5 yang dilatih untuk menumpu pada tugas SQL dan tugas perwakilan fungsi. Keputusan menunjukkan bahawa GPT-3.5 mencapai ketepatan yang lebih baik pada kedua-dua tugas.

选择GPT-3.5、还是乔丹Llama 2等开源模型?综合比较后答案有了

Dari segi penggunaan perkakasan, percubaan menggunakan GPU A40, iaitu lebih kurang AS$0.475.

选择GPT-3.5、还是乔丹Llama 2等开源模型?综合比较后答案有了

Selain itu, eksperimen menyenaraikan dua set data yang sangat sesuai untuk menakutkan, subset set data Spider dan fungsi Viggo mewakili set data.

Untuk membuat perbandingan yang adil dengan model GPT-3.5, eksperimen telah dijalankan pada Llama dengan hiperparameter minimum.

Dua pilihan utama untuk percubaan artikel ini ialah menggunakan parameter Kod Llama 34B dan Lora dan bukannya parameter parameter penuh.度 Percubaan ini sebahagian besarnya diikuti oleh peraturan konfigurasi parameter super LoRa Beban LoRA adalah seperti berikut:

选择GPT-3.5、还是乔丹Llama 2等开源模型?综合比较后答案有了Gesaan SQL adalah seperti berikut:

选择GPT-3.5、还是乔丹Llama 2等开源模型?综合比较后答案有了

, sila semak bahagian paparan SQL. blog asal untuk gesaan lengkap, sila semak blog asal Percubaan tidak menggunakan set data Spider yang lengkap Borang khusus adalah seperti berikut

department : Department_ID [ INT ] primary_key Name [ TEXT ] Creation [ TEXT ] Ranking [ INT ] Budget_in_Billions [ INT ] Num_Employees [ INT ] head : head_ID [ INT ] primary_key name [ TEXT ] born_state [ TEXT ] age [ INT ] management : department_ID [ INT ] primary_key management.department_ID = department.Department_ID head_ID [ INT ] management.head_ID = head.head_ID temporary_acting [ TEXT ]
Salin selepas log masuk

Percubaan memilih untuk menggunakan persilangan sql-create-. set data konteks dan set data Spider. Konteks yang disediakan untuk model ialah perintah cipta SQL seperti ini:

CREATE TABLE table_name_12 (class VARCHAR, frequency_mhz VARCHAR, city_of_license VARCHAR)
Salin selepas log masuk

Kod dan alamat data untuk tugasan SQL: https://github.com/samlhuillier/spider-sql-finetune

Contoh gesaan perwakilan fungsi Seperti yang ditunjukkan di bawah: Fungsi 提 menunjukkan bahagian gesaan paparan Untuk gesaan yang lengkap, sila lihat output blog asal seperti yang ditunjukkan di bawah

Fungsi mewakili kod tugas dan alamat data: https://github.com/. samlhuillier/viggo-finetune选择GPT-3.5、还是乔丹Llama 2等开源模型?综合比较后答案有了

Untuk maklumat lanjut, sila semak blog asal.

Pautan asal:

https://ragntune.com/blog/gpt3.5-vs-llama2-finetuning?continueFlag=11fc7786e20d7786e20d7786e20d498c94daaa

Atas ialah kandungan terperinci Pilih GPT-3.5 atau Jordan Llama 2 dan model sumber terbuka yang lain? Selepas perbandingan menyeluruh, jawapannya ialah. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

Video Face Swap

Video Face Swap

Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Alat panas

Notepad++7.3.1

Notepad++7.3.1

Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina

SublimeText3 versi Cina

Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1

Hantar Studio 13.0.1

Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6

Dreamweaver CS6

Alat pembangunan web visual

SublimeText3 versi Mac

SublimeText3 versi Mac

Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Pengarang ControlNet mendapat satu lagi kejayaan! Seluruh proses menghasilkan lukisan daripada gambar, memperoleh 1.4k bintang dalam masa dua hari Pengarang ControlNet mendapat satu lagi kejayaan! Seluruh proses menghasilkan lukisan daripada gambar, memperoleh 1.4k bintang dalam masa dua hari Jul 17, 2024 am 01:56 AM

Ia juga merupakan video Tusheng, tetapi PaintsUndo telah mengambil laluan yang berbeza. Pengarang ControlNet LvminZhang mula hidup semula! Kali ini saya menyasarkan bidang lukisan. Projek baharu PaintsUndo telah menerima 1.4kstar (masih meningkat secara menggila) tidak lama selepas ia dilancarkan. Alamat projek: https://github.com/lllyasviel/Paints-UNDO Melalui projek ini, pengguna memasukkan imej statik, dan PaintsUndo secara automatik boleh membantu anda menjana video keseluruhan proses mengecat, daripada draf baris hingga produk siap . Semasa proses lukisan, perubahan garisan adalah menakjubkan Hasil akhir video sangat serupa dengan imej asal: Mari kita lihat lukisan lengkap.

Mendahului senarai jurutera perisian AI sumber terbuka, penyelesaian tanpa ejen UIUC dengan mudah menyelesaikan masalah pengaturcaraan sebenar SWE-bench Mendahului senarai jurutera perisian AI sumber terbuka, penyelesaian tanpa ejen UIUC dengan mudah menyelesaikan masalah pengaturcaraan sebenar SWE-bench Jul 17, 2024 pm 10:02 PM

Lajur AIxiv ialah lajur di mana tapak ini menerbitkan kandungan akademik dan teknikal. Dalam beberapa tahun kebelakangan ini, lajur AIxiv laman web ini telah menerima lebih daripada 2,000 laporan, meliputi makmal terkemuka dari universiti dan syarikat utama di seluruh dunia, mempromosikan pertukaran dan penyebaran akademik secara berkesan. Jika anda mempunyai kerja yang sangat baik yang ingin anda kongsikan, sila berasa bebas untuk menyumbang atau hubungi kami untuk melaporkan. E-mel penyerahan: liyazhou@jiqizhixin.com; zhaoyunfeng@jiqizhixin.com Semua pengarang kertas kerja ini adalah daripada pasukan guru Zhang Lingming di Universiti Illinois di Urbana-Champaign (UIUC), termasuk: Steven Code repair; pelajar kedoktoran tahun empat, penyelidik

Daripada RLHF kepada DPO kepada TDPO, algoritma penjajaran model besar sudah pun 'peringkat token' Daripada RLHF kepada DPO kepada TDPO, algoritma penjajaran model besar sudah pun 'peringkat token' Jun 24, 2024 pm 03:04 PM

Lajur AIxiv ialah lajur di mana tapak ini menerbitkan kandungan akademik dan teknikal. Dalam beberapa tahun kebelakangan ini, lajur AIxiv laman web ini telah menerima lebih daripada 2,000 laporan, meliputi makmal terkemuka dari universiti dan syarikat utama di seluruh dunia, mempromosikan pertukaran dan penyebaran akademik secara berkesan. Jika anda mempunyai kerja yang sangat baik yang ingin anda kongsikan, sila berasa bebas untuk menyumbang atau hubungi kami untuk melaporkan. E-mel penyerahan: liyazhou@jiqizhixin.com; zhaoyunfeng@jiqizhixin.com Dalam proses pembangunan kecerdasan buatan, kawalan dan bimbingan model bahasa besar (LLM) sentiasa menjadi salah satu cabaran utama, bertujuan untuk memastikan model ini adalah kedua-duanya. berkuasa dan selamat untuk masyarakat manusia. Usaha awal tertumpu kepada kaedah pembelajaran pengukuhan melalui maklum balas manusia (RL

Kerja selepas kematian Pasukan Penyelarasan Super OpenAI: Dua model besar bermain permainan, dan output menjadi lebih mudah difahami Kerja selepas kematian Pasukan Penyelarasan Super OpenAI: Dua model besar bermain permainan, dan output menjadi lebih mudah difahami Jul 19, 2024 am 01:29 AM

Jika jawapan yang diberikan oleh model AI tidak dapat difahami sama sekali, adakah anda berani menggunakannya? Memandangkan sistem pembelajaran mesin digunakan dalam bidang yang lebih penting, menjadi semakin penting untuk menunjukkan sebab kita boleh mempercayai output mereka, dan bila tidak mempercayainya. Satu cara yang mungkin untuk mendapatkan kepercayaan dalam output sistem yang kompleks adalah dengan menghendaki sistem menghasilkan tafsiran outputnya yang boleh dibaca oleh manusia atau sistem lain yang dipercayai, iaitu, difahami sepenuhnya sehingga apa-apa ralat yang mungkin boleh dilakukan. dijumpai. Contohnya, untuk membina kepercayaan dalam sistem kehakiman, kami memerlukan mahkamah memberikan pendapat bertulis yang jelas dan boleh dibaca yang menjelaskan dan menyokong keputusan mereka. Untuk model bahasa yang besar, kita juga boleh menggunakan pendekatan yang sama. Walau bagaimanapun, apabila mengambil pendekatan ini, pastikan model bahasa menjana

Satu kejayaan ketara dalam Hipotesis Riemann! Tao Zhexuan amat mengesyorkan kertas kerja baharu daripada MIT dan Oxford, dan pemenang Fields Medal berusia 37 tahun mengambil bahagian Satu kejayaan ketara dalam Hipotesis Riemann! Tao Zhexuan amat mengesyorkan kertas kerja baharu daripada MIT dan Oxford, dan pemenang Fields Medal berusia 37 tahun mengambil bahagian Aug 05, 2024 pm 03:32 PM

Baru-baru ini, Hipotesis Riemann, yang dikenali sebagai salah satu daripada tujuh masalah utama milenium, telah mencapai kejayaan baharu. Hipotesis Riemann ialah masalah yang tidak dapat diselesaikan yang sangat penting dalam matematik, berkaitan dengan sifat tepat taburan nombor perdana (nombor perdana ialah nombor yang hanya boleh dibahagikan dengan 1 dan dirinya sendiri, dan ia memainkan peranan asas dalam teori nombor). Dalam kesusasteraan matematik hari ini, terdapat lebih daripada seribu proposisi matematik berdasarkan penubuhan Hipotesis Riemann (atau bentuk umumnya). Dalam erti kata lain, sebaik sahaja Hipotesis Riemann dan bentuk umumnya dibuktikan, lebih daripada seribu proposisi ini akan ditetapkan sebagai teorem, yang akan memberi kesan yang mendalam terhadap bidang matematik dan jika Hipotesis Riemann terbukti salah, maka antara cadangan ini sebahagian daripadanya juga akan kehilangan keberkesanannya. Kejayaan baharu datang daripada profesor matematik MIT Larry Guth dan Universiti Oxford

Kertas arXiv boleh disiarkan sebagai 'bertubi-tubi', platform perbincangan Stanford alphaXiv dalam talian, LeCun menyukainya Kertas arXiv boleh disiarkan sebagai 'bertubi-tubi', platform perbincangan Stanford alphaXiv dalam talian, LeCun menyukainya Aug 01, 2024 pm 05:18 PM

sorakan! Bagaimana rasanya apabila perbincangan kertas adalah perkataan? Baru-baru ini, pelajar di Universiti Stanford mencipta alphaXiv, forum perbincangan terbuka untuk kertas arXiv yang membenarkan soalan dan ulasan disiarkan terus pada mana-mana kertas arXiv. Pautan laman web: https://alphaxiv.org/ Malah, tidak perlu melawati tapak web ini secara khusus. Hanya tukar arXiv dalam mana-mana URL kepada alphaXiv untuk terus membuka kertas yang sepadan di forum alphaXiv: anda boleh mencari perenggan dengan tepat dalam. kertas itu, Ayat: Dalam ruang perbincangan di sebelah kanan, pengguna boleh menyiarkan soalan untuk bertanya kepada pengarang tentang idea dan butiran kertas tersebut Sebagai contoh, mereka juga boleh mengulas kandungan kertas tersebut, seperti: "Diberikan kepada

MLLM berasaskan Mamba yang pertama ada di sini! Berat model, kod latihan, dsb. semuanya telah menjadi sumber terbuka MLLM berasaskan Mamba yang pertama ada di sini! Berat model, kod latihan, dsb. semuanya telah menjadi sumber terbuka Jul 17, 2024 am 02:46 AM

Lajur AIxiv ialah lajur di mana tapak ini menerbitkan kandungan akademik dan teknikal. Dalam beberapa tahun kebelakangan ini, lajur AIxiv laman web ini telah menerima lebih daripada 2,000 laporan, meliputi makmal terkemuka dari universiti dan syarikat utama di seluruh dunia, mempromosikan pertukaran dan penyebaran akademik secara berkesan. Jika anda mempunyai kerja yang sangat baik yang ingin anda kongsikan, sila berasa bebas untuk menyumbang atau hubungi kami untuk melaporkan. E-mel penyerahan: liyazhou@jiqizhixin.com; zhaoyunfeng@jiqizhixin.com. Pengenalan Dalam beberapa tahun kebelakangan ini, aplikasi model bahasa besar multimodal (MLLM) dalam pelbagai bidang telah mencapai kejayaan yang luar biasa. Walau bagaimanapun, sebagai model asas untuk banyak tugas hiliran, MLLM semasa terdiri daripada rangkaian Transformer yang terkenal, yang

Latihan aksiomatik membolehkan LLM mempelajari penaakulan kausal: model 67 juta parameter adalah setanding dengan trilion tahap parameter GPT-4 Latihan aksiomatik membolehkan LLM mempelajari penaakulan kausal: model 67 juta parameter adalah setanding dengan trilion tahap parameter GPT-4 Jul 17, 2024 am 10:14 AM

Tunjukkan rantai sebab kepada LLM dan ia mempelajari aksiom. AI sudah pun membantu ahli matematik dan saintis menjalankan penyelidikan Contohnya, ahli matematik terkenal Terence Tao telah berulang kali berkongsi pengalaman penyelidikan dan penerokaannya dengan bantuan alatan AI seperti GPT. Untuk AI bersaing dalam bidang ini, keupayaan penaakulan sebab yang kukuh dan boleh dipercayai adalah penting. Penyelidikan yang akan diperkenalkan dalam artikel ini mendapati bahawa model Transformer yang dilatih mengenai demonstrasi aksiom transitiviti sebab pada graf kecil boleh digeneralisasikan kepada aksiom transitiviti pada graf besar. Dalam erti kata lain, jika Transformer belajar untuk melakukan penaakulan sebab yang mudah, ia boleh digunakan untuk penaakulan sebab yang lebih kompleks. Rangka kerja latihan aksiomatik yang dicadangkan oleh pasukan adalah paradigma baharu untuk pembelajaran penaakulan sebab berdasarkan data pasif, dengan hanya demonstrasi

See all articles